Andragradsekvationer

Från Wikiskola
Hoppa till navigering Hoppa till sök
[redigera]
Mål för undervisningen Andragradsekvationer

Du kommer att lära dig lösa andragradsekvationer med hjälp av den mytomspunna pq-formeln.


Fullständiga andragradsekvationer

pq-formeln - Förklaring

Mario om nyttan med andragradsekvationer.

En generell beskrivning av en andragradsekvation ser ut så här:

[math]\displaystyle{ x^2 + px + q = 0 }[/math]

där p och q är tal (siffror) i den speciella ekvationen.

Den allmänna ekvationen har lösningen:

[math]\displaystyle{ x=-\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2-q} }[/math]

Om du vill lösa en ekvation behöver du bara ta reda på vad p och q motsvaras av i din ekvation och sedan sätter du in dessa siffror i formeln ovan.

Tänk på att det inte ska stå någor framför [math]\displaystyle{ x^2 }[/math]-termen

Uttrycket inom rottecknet kallas ekvationens diskriminant.

Rötterna

Lösningen till andragradsekvatoner kallas rötter. Andragradsekvationer kan ha två rötter, en dubbelrot eller komplexa rötter (icke-reel lösning).

A: Två skärningspunkter, två reella rötter
B: En skärningspunkt, en reell dubbelrot
C: Ingen skärningspunkt, rötterna komplexa

Att lösa en andragradsekvation med reella koefficienter motsvaras av att finna skärningspunkterna för parabeln

[math]\displaystyle{ y=x^2 }[/math]

och den räta linjen

[math]\displaystyle{ y = k\,x + m }[/math]

vars riktningskoefficient k är -b/a och som skär y-axeln i punkten (0, m), där m = -c/a. Andragradsekvationen kan därför skrivas som ett ekvationssystem:

[math]\displaystyle{ \begin{cases}y=x^2 \\y=-\cfrac{b}{a} \ x - \cfrac{c}{a}\end{cases} }[/math]

Om skärningspunkter saknas har ekvationssystemet endast komplexa lösningar.

En andragradsekvation har, i enlighet med algebrans fundamentalsats, alltid två lösningar, som är reella eller komplexa tal, beroende på ekvationens koefficienter:

  • [math]\displaystyle{ x^2 + 2x + 1 = 0 }[/math]
har två lösningar som är identiska reella tal (dubbelrot)
  • [math]\displaystyle{ x^2+2x-1=0 }[/math]
har två reella lösningar
  • [math]\displaystyle{ x^2 + 2x + 2 = 0 }[/math]
har två lösningar som är komplexa tal

Ekvationens diskriminant (se nedan) avgör vilket av de tre fallen som gäller.

Delar av texten i detta avsnitt kommer från Wikipedia