Andragradsekvationer

Från Wikiskola
Hoppa till navigering Hoppa till sök


[redigera]
Mål för undervisningen Andragradsekvationer

Du kommer att lära dig lösa andragradsekvationer med hjälp av den mytomspunna pq-formeln.


Fullständiga andragradsekvationer

pq-formeln - Förklaring

Mario om nyttan med andragradsekvationer.

En generell beskrivning av en andragradsekvation ser ut så här:

[math]\displaystyle{ x^2 + px + q = 0 }[/math]

där p och q är tal (siffror) i den speciella ekvationen.

Den allmänna ekvationen har lösningen:

[math]\displaystyle{ x=-\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2-q} }[/math]

Om du vill lösa en ekvation behöver du bara ta reda på vad p och q motsvaras av i din ekvation och sedan sätter du in dessa siffror i formeln ovan.

Tänk på att det inte ska stå någor framför [math]\displaystyle{ x^2 }[/math]-termen

Uttrycket inom rottecknet kallas ekvationens diskriminant.

Rötterna

Lösningen till andragradsekvatoner kallas rötter. Andragradsekvationer kan ha två rötter, en dubbelrot eller komplexa rötter (icke-reel lösning).

A: Två skärningspunkter, två reella rötter
B: En skärningspunkt, en reell dubbelrot
C: Ingen skärningspunkt, rötterna komplexa

Att lösa en andragradsekvation med reella koefficienter motsvaras av att finna skärningspunkterna för parabeln

[math]\displaystyle{ y=x^2 }[/math]

och den räta linje|räta linjen

[math]\displaystyle{ y = k\,x + m }[/math]

vars riktningskoefficient k är -b/a och som skär y-axeln i punkten (0, m), där m = -c/a. Andragradsekvationen kan därför skrivas som ett ekvationssystem:

[math]\displaystyle{ \begin{cases}y=x^2 \\y=-\cfrac{b}{a} \ x - \cfrac{c}{a}\end{cases} }[/math]

Om skärningspunkter saknas har ekvationssystemet endast komplexa lösningar.

En andragradsekvation har, i enlighet med algebrans fundamentalsats, alltid två lösningar, som är reella eller komplexa tal, beroende på ekvationens koefficienter:

  • [math]\displaystyle{ x^2 + 2x + 1 = 0 }[/math]
har två lösningar som är identiska reella tal (dubbelrot)
  • [math]\displaystyle{ x^2+2x-1=0 }[/math]
har två reella lösningar
  • [math]\displaystyle{ x^2 + 2x + 2 = 0 }[/math]
har två lösningar som är komplexa tal

Ekvationens diskriminant (se nedan) avgör vilket av de tre fallen som gäller.

Delar av texten i detta avsnitt kommer från Wikipedia

[redigera]

pq-formeln - Exempel

Exempel
pq-formeln på standardandragradsekvation
[math]\displaystyle{ x^2+4x-5=0 }[/math]
[math]\displaystyle{ x=-\frac{4}{2} \pm \sqrt{(\frac{4}{2})^2+5} }[/math]
[math]\displaystyle{ x=-2 \pm \sqrt{(2)^2+5} }[/math]
[math]\displaystyle{ x=-2 \pm \sqrt{4+5} }[/math]
[math]\displaystyle{ x=-2 \pm 3 }[/math]
[math]\displaystyle{ x_1=-2 + 3=1 }[/math]
[math]\displaystyle{ x_2=-2 - 3=-5 }[/math]


Exempel
pq-formeln på knepigare ragradsekvation
[math]\displaystyle{ 3x^2-9x=12 }[/math]
[math]\displaystyle{ 3x^2-9x-12=0 }[/math]
[math]\displaystyle{ x^2-3x-4=0 }[/math]
[math]\displaystyle{ x=\frac{3}{2} \pm \sqrt{(\frac{3}{2})^2+4} }[/math]
[math]\displaystyle{ x=\frac{3}{2} \pm \sqrt{\frac{9}{4}+4} }[/math]
[math]\displaystyle{ x=\frac{3}{2} \pm \sqrt{\frac{9}{4}+\frac{16}{4}} }[/math]
[math]\displaystyle{ x=\frac{3}{2} \pm \sqrt{\frac{25}{4}} }[/math]
[math]\displaystyle{ x=\frac{3}{2} \pm \frac{5}{2} }[/math]
[math]\displaystyle{ x_1=\frac{3}{2} - \frac{5}{2}=-\frac{2}{2}= -1 }[/math]
[math]\displaystyle{ x_2=\frac{3}{2} + \frac{5}{2}=\frac{8}{2}=4 }[/math]


Faktorisering för att lösa andragradsekvationer

Exempel
Lös ekvationen
[math]\displaystyle{ x^2+7x+12=0 }[/math]

Hitta faktorerna

[math]\displaystyle{ (x+3)(x+4)=0 }[/math]

Rötterna ges av nollproduktmetoden

[math]\displaystyle{ x_1=-4, \qquad x_2=-3 }[/math]


[redigera]

Pythonlösning

Programmeringsuppgift

Andragradsekvation Python

Dataövning

[redigera]

Hur det började

Den här behöver man fundera på en stund.

How AlKhawarizmi Solved Quadratic Equation
eller Quadratic equations in early Baghdad

GGB-bok

Bläddra igenom den här GeoGebraboken och få en överblick över hur andragradsekvationer fungerar

https://ggbm.at/drMyunCX


[redigera]

Matematikdueller

Uppgift
Matematikduellernas uppgifter är hemliga
Så går duellerna till
Så går duellerna till

Men så här går de till:

Kval
Grundomgång
Finaler



[redigera]

Sorteringsövningar och val av metod

Exempel
Gör dessa i helklass

Testa själva.

Diskutera vilken GGB som var bäst och varför.

Vad kunde förbättras?

En Sorteringsövning Klicka och dra!
Och en fin övning med facit: andragradsekvationer alla metoder av Svetlana och Anders.
Faktorisera andragradsekvationer (nollpunktsmetoden). Här är det givet att du ska faktorisera men du får öva dig på hur.


[redigera]

Förstå rötterna grafiskt

Hela konnstruktionen finns här (med frågor och diskussioner).

[redigera]
Swayen till detta avsnitt: Andragradskvationer




  • Repetition inför prov Algebra Ma2C
  • Facit och bedömning: Christers bedömningsmall från mellandagen bör finnas här. Lösningen är till Prov 1 ver 4 (2013). Lägg på SlideShare.
  • Diagnos 2 med pq-formeln
Du kan printa denna! Snabbdiagnos 2


rs-formeln

rs-formeln är en variant av pq-formeln:

[math]\displaystyle{ x^2 = rx + s }[/math]

ger

[math]\displaystyle{ x = \frac{r}{2} \pm \sqrt{(\frac{r}{2})^2+s} }[/math]

(Färre minustecken.)

Kan du förklara hur rs-formeln funkar?

Lär dig begreppen på engelska

Genom att se PowerPointen till höger blir du bättre på att lösa andragradsekvationer genom faktorisering.

Rs solving graphingquadraticequation


Välja lämplig metod för att lösa en andragradsekvation

Se två filmer med Michael Bondestam


Exit ticket