Algebra 2C: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 49: Rad 49:
== [[Komplexa tal Ma2C]] ==
== [[Komplexa tal Ma2C]] ==


== Rotekvationer ==
== [[Rotekvationer]] ==
{{flipp| - }}{{lm2c|Diverse|45-49}}  {{TE12A|8}} 
{{#ev:youtube|8hY6gm_NTMg|320|right|Rotekvationen}}
 
'''Teori'''
 
Rotekvationer innehåller x-termer och roten ur x-termer. Man löser dem genom att kvadrera båda leden.
 
: <math> \sqrt{x+2} = x </math>
 
Kvadrera båda sidorna:
 
: <math> x+2 = x^2 </math>
 
: <math> x^2 - x - 2 = 0 </math>
 
: <math> x =  \frac{1}{2} \pm \sqrt{\frac{1}{4} + 2} </math>
 
: <math> x =  \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}} </math>
 
: <math> x =  \frac{1}{2} \pm \sqrt{\frac{9}{4}} </math>
 
: <math> x =  \frac{1}{2} \pm \frac{3}{2} </math>
 
: <math> x_1 = - 1, x_2 = 2 </math>
 
Viktigt att kolla om man har falska rötter.
 
<math>-1 </math> är en falsk rot eftersom den inte gör att vänster led och höger led blir lika i ursprungsekvationen.
 
Svaret är alltså <math>x = 2</math>
{{clear}}


== Problemlösning med ekvationer ==
== Problemlösning med ekvationer ==

Versionen från 3 januari 2016 kl. 21.09

Intro Algebra Ma2C

Förenkling av uttryck

Ekvationer Ma2C

Kvadrerings- och konjugatregler

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!

Parentesmultiplikation

Kvadreringsregeln Ma2C

En första läxa

Det är viktigt att vi kommer igång med att lära oss Geogebra.

Första naturliga ingången är egentligen räta linjen där det blir en tydlig koppling mellan funktion och utseende.

GGB-uppgift 1

Ladda ner programmet.

Skriv in en valfri räta linjens funktion.

Ändra färg och tjocklek på grafen.

Ändra så att grafens egenskap syns.

Mejla filen till din lärare.

Konjugatregeln Ma2C

Ekvationer med x^2-term

Andragradsekvationer

Enkla andragradsekvationer

Fullständiga andragradsekvationer

Kvadratkomplettering

Diagnos 2 med pq-formeln

Du kan printa denna! Snabbdiagnos 2


Andragradsekvationer och rötter

Komplexa tal Ma2C

Rotekvationer

Problemlösning med ekvationer

Professionell matte

Har ni tänkt på att det är ett tag sedan vi gjorde matte som man har nytta av i vardagen? Kvadreingsregeln, konjugatregeln, kvadratkompletteringen och pq-formel hör inte till vardagsmatten. De hör till den professionella matten. Sådan matte som ingenjörer använder.

Vad ska man ha andragradsekvationer till?

De används i spel till exempel.

PhET




En idé kan vara att ta en screenshot på en projektilbana från PhET-simuleringen ovan och klistra in i GeoGebra. Sedan sätter man tre eller fler punkter på kurvan och anpassar till en andragradsekvation. Det visar om inte annat bakvägen att fysiken innehåller andragradsfunktioner. Om man är osäker på hur man anpassar punkter till en funktion så har jag gjort det med mätvärdena från laborationen på tyngdacceleration.

Ekvationslösning med faktorisering

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!
Ma2C: Faktorisering, sidan 50-56

Lektion 9-10


Diagnosen blir läxa att göra om hemma och denna gång ska den ha alla rätt. Det gäller alla. Facit kommer upp på tisdag så kan alla rätta själva.

På tisdag som är en lång lektion kommer vi att göra uppdelning i faktorer både med konjugatregeln och kvadreringsreglerna om det går.

Uppdelning i faktorer med konjugatregeln

Uppgift

Först ska vi repetera konjugatregeln med ett lösblad där det är rad snabba uppgifter. Dessa uppgifter bör klaras av på mindre än tre minuter.


Uppdelning i faktorer med kvadreringsreglerna

Uppgift

Här ska vi också repetera kvadreringsreglerna med ett lösblad.


Faktorisering och ekvationer

Onsdag

Repetera lösbladet från förra lektionen en gång till. I övrigt struntar vi i beting på faktorisering med kvadreringsregelerna.

Dagens beting: 1426-1430

Dataövning - konsekutiva tal

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!
Ma2C: Konsekutiva tal, sidan 57
Fredriks lösning.
Fredriks lösning.

Del ett (n-1)(n+1)+1

Del två

Del tv är svårare. Det handlar om fyra konsekutiva tal. Addera ett till produkten av de fyra talen och ta roten ur. Detta ska bli ett heltal.

  • Wolfram|Alpha har en lösning men ingen förklaring.
  • Med hjälp av den ledtråden från Wolfram ser min lösning ut så här.
  • Tanja löser uppgiften genom att pröva.
  • Fredrik använder kvadratkomplettering och substitution för att lösa uppgiften. Lösningen syns i bilden till höger.
  • Charlie i NV11 löser det genom att hitta mönster i de tal han prövar med och ...

Prov onsdag vecka 6

Lektion 11-12


Uppgift
Diagnos 14


Repetition på fredag och måndag

Uppgift: Khan Academy

Öva på Khan:
  1. Khan om hur man multiplicerar binom ska du verkligen öva på.


Uppgifter

  • Läs sammanfattningen på sidan 54.
  • Gör Test 1 på sidan 55.

pappersövningar

  1. Öva ekvationer (= Extrablad ekvationer): finns bara på papper
  2. Faktorisering: finns bara på papper
  3. Öva enkla andragradsekvationer: finns bara på papper
Du kan printa denna!

Nöt in detta som du måste kunna!

  1. Öva konjugatregeln
  2. Öva kvadreringsreglerna
  3. Öva pq-formeln


Provet skall vara tisdag vecka 7 (ligger på SchoolSoft).

Facit och bedömning

Christers bedömningsmall från mellandagen bör finnas här. Lösningen är till Prov 1 ver 4 (2013)