Andragradsekvationer: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 31: | Rad 31: | ||
Lösningen till andragradsekvatoner kallas rötter. Andragradsekvationer kan ha två rötter, en dubbelrot eller komplexa rötter (icke-reel lösning). | Lösningen till andragradsekvatoner kallas rötter. Andragradsekvationer kan ha två rötter, en dubbelrot eller komplexa rötter (icke-reel lösning). | ||
[[File:SolutionsToQuadraticEquation-1.png|thumb| | |||
'''A:''' Två skärningspunkter, två reella rötter<br>'''B:''' En skärningspunkt, en reell dubbelrot<br>'''C:''' Ingen skärningspunkt, rötterna komplexa]] | |||
Att lösa en andragradsekvation med reella koefficienter motsvaras av att finna skärningspunkterna för [[parabel (kurva)|parabeln]] | |||
:<math>y=x^2</math> | |||
och den [[rät linje|räta linjen]] | |||
:<math>y = k\,x + m</math> | |||
vars [[riktningskoefficient]] ''k'' är ''-b/a'' och som skär ''y''-axeln i punkten (''0, m''), där ''m = -c/a''. Andragradsekvationen kan därför skrivas som ett [[ekvationssystem]]: | |||
:<math> | |||
\begin{cases}y=x^2 \\y=-\cfrac{b}{a} \ x - \cfrac{c}{a}\end{cases} | |||
</math> | |||
Om skärningspunkter saknas har ekvationssystemet endast komplexa lösningar. | |||
En andragradsekvation har, i enlighet med [[algebrans fundamentalsats]], alltid två lösningar, som är reella eller komplexa tal, beroende på ekvationens koefficienter: | |||
* <math>x^2 + 2x + 1 = 0</math> | |||
:har två lösningar som är identiska reella tal (dubbelrot) | |||
* <math>x^2+2x-1=0</math> | |||
:har två reella lösningar | |||
* <math>x^2 + 2x + 2 = 0</math> | |||
:har två lösningar som är komplexa tal | |||
Ekvationens ''diskriminant'' (se nedan) avgör vilket av de tre fallen som gäller. | |||
''Delar av texten i detta avsnitt kommer från [https://sv.wikipedia.org/wiki/Andragradsekvation Wikipedia]'' | |||
= Exempel = | = Exempel = |