Potensekvationer: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 159: Rad 159:
{{uppgruta|'''När är funktionen definierad för negativa x-värden?'''
{{uppgruta|'''När är funktionen definierad för negativa x-värden?'''


# Skapa en glidare som heter k i Geogebra. Skriv helt enkelt k och Enter. Glidaren kommer kommer automatiskt att ha intervallet <math>-5 \leq k \leq 5 </math>
# Skapa en glidare som heter k i Geogebra. Skriv helt enkelt k och klicka Skapa glidare. Glidaren kommer kommer automatiskt att ha intervallet <math>-5 \leq k \leq 5 </math>
# Skapa funktionen <math>f(x) = x^k</math>
# Skapa funktionen <math>f(x) = x^k</math>
# För vilka värden på k är funktionen definierad för negativa värden på x?
# För vilka värden på k är funktionen definierad för negativa värden på x?

Versionen från 26 september 2018 kl. 06.56

[redigera]
Mål för undervisningen Potensekvationer

Vi ska lära oss hur man löser potensekvationer.


Potensekvationen:

[math]\displaystyle{ x^a = b }[/math]

där a och b är reella tal men a är ofta 1/3, 1/2, 2 eller 3.

Lösning: balansera ekvation genom exponentiering.

[math]\displaystyle{ (x^a)^{\frac{1}{a}} = b^{\frac{1}{a}} }[/math]
[math]\displaystyle{ x = b^{\frac{1}{a}} }[/math]

Observera: Vid jämna exponenter finns det två lösungar, en positiv och en negativ.

[redigera]

Exempel 1:

[math]\displaystyle{ x^2 = 4 }[/math]
[math]\displaystyle{ x = \pm4 ^{\frac{1}{2}} }[/math]
[math]\displaystyle{ x = \pm 2 }[/math]


Exempel 2:

[math]\displaystyle{ x^3 = 8 }[/math]
[math]\displaystyle{ x = 8^{\frac{1}{3}} }[/math]
[math]\displaystyle{ x = 2 }[/math]


Exempel 3:

[math]\displaystyle{ x^2 = -1 }[/math]

Denna ekvation saknar reella lösningar. Vi kan inte ta roten ur ett negativt tal (ännu, vi lär oss det i ma2c) för då bildas imaginära tal.

[redigera]

Undersök GGB:n.

Använd GeoGebran Nedan för att lösa följande uppgifter:

  1. [math]\displaystyle{ x^2 = 4 }[/math]
  2. [math]\displaystyle{ x^2 = 9 }[/math]
  3. [math]\displaystyle{ x^3 = 8 }[/math]
  4. [math]\displaystyle{ x^4 = 6 }[/math]
  5. [math]\displaystyle{ x^3 = 27 }[/math]
  6. [math]\displaystyle{ x^{1.5} = 5.5 }[/math]
  7. [math]\displaystyle{ 2 \cdot x^2 = 8 }[/math]

GeoGebran visar [math]\displaystyle{ x^a = b }[/math]

Tips: Du kan skala en axel genom att trycka Shift och klicka och dra i axeln.

[redigera]

Potensekvationer, av Svetlana Yushmanova.

Potensekvationer 2

[redigera]
Programmeringsuppgift

Python-hjälp Fler uppgifter

Mål för undervisningen Kom igång med programmering i matematiken.

Det är lämpligt att starta lektionen med detta program.

Målet är att du ska köra programmet och spela spelet Gissa talet för att komma till insikt om något som du har nytta av på denna lektion.


Gissa talet

Uppgift
Gissa ett tal
  1. Kör programmet tillsammans med en kompis.
  2. Kör det flera gånger.
  3. Vilken strategi ger minst antal gissningar?
  4. Finns det ett maximalt antal gissningar om man följer strategin?
  5. Hur kan du uttrycka maximala antalet gissningar som en funktion av intervallet talet ligger i?


Python-koden

# förklarar syftet med spelet
print("Detta spel handlar om att gissa det tal som din kamrat matar in. Du kan alltid avbryta programmet genom att skriva 'exit'.")

# Ange ett tal
number = input("Ange ett tal mellan 1 - 100. ")

# använd heltal
number = int(number)

# räknare
guess = 0
count = 0

# räknare
while guess != number:

# gissa talet
    guess = input ("Gissa talet som din kamrat har angett: ")
    if guess == "exit":
        break
# räkna gissningar
    guess = int(guess)
    count += 1
       
# jämför gissning med tal
    if guess < number:
        print("Talet du angav ar mindre an det sokta talet.")
    elif guess > number:
        print("Talet du angav ar storre an det sokta talet.")
    else:
        print("Grattis! Du har gissat talet som din kamrat har angett.")
        print("Talet är:",number,)        
        print("Och det har tagit dig",count,"gissningar.")
        
# visar resultatet så länge vi vill 
input("Tryck Enter för att avsluta programmet")

Uppgiften är inspirerad av Attila Szabo, Utbildningsförvaltningen Stockholm.

[redigera]
Uppgift
När är funktionen definierad för negativa x-värden?
  1. Skapa en glidare som heter k i Geogebra. Skriv helt enkelt k och klicka Skapa glidare. Glidaren kommer kommer automatiskt att ha intervallet [math]\displaystyle{ -5 \leq k \leq 5 }[/math]
  2. Skapa funktionen [math]\displaystyle{ f(x) = x^k }[/math]
  3. För vilka värden på k är funktionen definierad för negativa värden på x?



[redigera]
Swayen till detta avsnitt: Potensekvationer


Wikipedia Potenser



Lär mer GeoGebra

Sidan GeoGebra ger länkar till tutorials och en långfilm med Jonas Hall.

Exit ticket