Algebra 2C: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
(37 mellanliggande sidversioner av 2 användare visas inte)
Rad 1: Rad 1:
== [[Intro Algebra Ma2C]]==


Kapitel 1 i boken Matematik 2C innehåller 16 delar vilket rimligen bör ta omkring 16 lektionstillfällen eller fyra veckor i anspråk.
== [[Förenkling av uttryck]] ==
[[File:Binomio al cubo.svg|right|400px|Binomio al cubo]]


= Repetition =
== [[Ekvationer Ma2C]] ==
Varför ska man lära sig algebra?
 
<youtube>Cq832vvq9PE</youtube>
 
 
== Mål för wikiskola på denna sida ==
 
Ett mål för denna kurs är att varje avsnitt om möjligt ska ha ett videoklipp med någon som förklarar, relevant länk till Khan samt en GGB el dyl som anknyter till bokens teoridel. Dessutom vore det fint med några egna övningsuppgifter och någon datorövning.
 
== Intro ==
 
'''Kuriosa:''' [http://www.google.se/search?q=3x^2%2B3x%2B3%3D5&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:sv-SE:official&client=firefox-a#sclient=psy-ab&hl=sv&client=firefox-a&hs=aAn&rls=org.mozilla:sv-SE%3Aofficial&source=hp&q=y%3D3x^2%2B3x%2B3%2C+y%3D100&pbx=1&oq=y%3D3x^2%2B3x%2B3%2C+y%3D100&aq=f&aqi=&aql=&gs_sm=e&gs_upl=29l3131l2l3711l5l5l0l0l0l0l221l843l0.4.1l5l0&bav=on.2,or.r_gc.r_pw.,cf.osb&fp=26d2ec7e6f870a19&biw=1118&bih=595 Grafer på Google]
 
'''Algebraintroti boken på sid 3'''
 
[http://sv.wikipedia.org/wiki/Girolamo_Cardano Gerolamo Cardano] funderade över lösingen till följande ekvation
 
Kan vi dela talet 8 i två delar så att deras produkt blir 25?
x(8-x) = 25
 
Ekvationen har följande rötter:
 
x = 4 + rot(-9)
x = 4 - rot(-9)
 
Ekvationen kan skrivas om på detta sätt:
 
8x - x<sup>2</sup> = 25
 
x<sup>2</sup> - 8x + 25 = 0
 
Men vad är roten ur -9? Det är ett imagint tal, som skrivs 3i. Kolla gärna Wolfram Alpha för en [http://www.wolframalpha.com/input/?i=x%288-x%29%20%3D%2025&t=ff3tb01 lösning] till ekvationen ovan
 
== Förenkling av uttryck ==
 
'''Sats: Distributiva lagen'''
 
a(b+c) = ab + ac
 
== Ekvationer ==
 
Vid lösning av ekvationer kan du tänka att det är tillåtet att göra samma sak på båda sidor av likhetstecknet. Du kan addera samma sak på båda sidorna. Eller subtrahera samma sak på båda sidorna. På samma sätt kan du multiplicera eller dividera med samma sak på båda sidorna.
 
Detta kan du använda för att förkorta bort något på ena sidan och resultatet blir att den saken byter upp på andra sidan men med motsatt tecken (plus blir minus osv).
 
På denna sida från Matteboken.se finns en förklaring [http://www.matteboken.se/lektioner/matte-1/algebra/skriva-om-formler skriva om hur man ändrar i ekvationer på detta sätt]. Titta gärna på filmen på sidan också.
 
När man får kläm på det här sättet att ändra i ekvationer brukar man helt enkelt flytta över saker till andra sidan och byta tecken. På så sätt kan man ändra en ekvation så att man får sitt x (eller vilken variabel man nu vill lösa ut) ensamt på en sida.


= Kvadrerings- och konjugatregler =
= Kvadrerings- och konjugatregler =
{{flipp|-}}
== [[Parentesmultiplikation]] ==


== Parentesmultiplikation ==
== [[Kvadreringsregeln Ma2C]] ==
 
=== Multiplikationen är både algebra och geometri ===
<html>
<iframe src="http://www.slideshare.net/slideshow/embed_code/14577014" width="342" height="291" align="right" frameborder="0" marginwidth="0" marginheight="0" scrolling="no" style="border:1px solid #CCC;border-width:1px 1px 0;margin-bottom:5px" allowfullscreen> </iframe> <div style="margin-bottom:5px"> <strong> <a href="http://www.slideshare.net/HkanElderstig/gnger-med-bilder" title="Gånger med bilder" target="_blank">Gånger med bilder</a> </strong> from <strong><a href="http://www.slideshare.net/HkanElderstig" target="_blank">Håkan Elderstig</a></strong> </div>
</html>
 
Hur funkar det om man multiplicerar två parenteser med varandra?
 
'''Först inleder vi med ett exempel med siffror'''
 
En övning som visar exemplet nedan i bilder. Ett tal kan delas upp i sin entalsdel och sin tiotalsdel innan en multiplikation. <font color=darkgreen>PowerPoint</font color=darkgreen>. [[Media:Ganger_med_bilder.ppt|Gånger av tvåsiffriga tal ]]visas med hjälp av bilder. ''Detta är [[Övningar_tal_och_räkning_6B|ett exempel från grundskolan]].'' Det syns till höger.
 
exempelvis
12*13=(10+2)*(10+3)=100+30+20+6.
 
'''Repetition aritmetik:''' Pappersövning i [[Media:Skriftlig_huvudrakning_ovning.doc|skriftlig huvudräkning]].
{{clear}}
 
=== Och nu med bokstäver ===
 
[[Fil:Abcd.png|thumb|(a+b)(c+d)=ac+ad+bc+bd]]
 
Tänk sedan att du gör samma sak med bokstäver
 
(a+b)(c+d)=ac+ad+bc+bd
<br>
<ggb_applet width="796" height="511"  version="4.0" ggbBase64="UEsDBBQACAgIAChaLEAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAAoWixAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbN1b747bNhL/nD4FoQ+HXWxsi9T/nLdFk7uiAZImQHKHw30pKIm2GUuiKlJeb9DHuXuSvtgNScmW7U32T5Oc10E2FMXhDGfmNzMkV5n+sC4LtGKN5KK6dPDYdRCrMpHzan7ptGo2ip0fvv9uOmdiztKGoploSqouHV9T8vzSmSVhMpvFeJRnLBr5LItHSZ6kozwnmEUsSGgWOQitJX9WiV9oyWRNM/YuW7CSvhIZVUbwQqn62WRydXU17kWNRTOfzOfpeC1zB8EyK3npdA/PgN3OpCvPkBPXxZN/vX5l2Y94JRWtMuYgrULLv//uyfSKV7m4Qlc8V4tLJ3Z9By0Yny9Ap9APHTTRRDUYpGaZ4ismYeqga3RWZe0YMlrp8Sf2CRUbdRyU8xXPWXPpuGPiRhHGvk+iOHTDJAwcJBrOKtUR407opGc3XXF2ZfnqJyMSlqmEKFKqWaLff0fEJS56qhtsGwJNGNoh175zPdsQ2/i2CSyNb6f7ltS3NL6l8T0HrbjkacHAw7SQYEJezRpw36Yv1XXBzHq6F1v18VPQSfKPQIxdwIm1uek81T8h/Ph6YLKrJB5IVU17T6G9yCgJ7y6S/ClFvY2aYXQokwSfUDP8jFCr9130xMHAtCDK/DU/BxK9z6m5L9H2bxPoxVpgFPs3Cgz9b6LidNKHyrSLDiQXmrZDj2Kl1PHiJShINOwxCiA2wghQHiCcQBMRBNGAcID8ALo4RqFuI+RFMOAjD8VI02EPmeAIYvjHjwyzEAXATL+NICYRBkE+CjyETUz5CCIJmbiEGCUeUAQBCmCSFo+JZuGFyA+h58XIhzXqkIwwEHowEfogniAPI09PxhEiIQo1P+zrUA9jvXRgSVDoohBrhhDVENE2moE+Rp7Wps9rvKpbtWOirMz7RyXqjS+AGvLRNu3Z/LSTFZ9MC5qyAgrFO+1JhFa00BFhBM1EpVDvRGLfzRtaL3gm3zGlYJZEH+iKvqKKrX8CatnLNrSZqOTbRqgXomjLSiKUicLdrFkUePBMNquGjjcY8IcDwWAgHDxHN8oVMIJayUC+aGRPTvP8pabYpgaw5JuquH7eMLqsBd9VYzoxNWfK2qzgOafVPwGsWoq2C+pLkElXfQnyY69fiGjyd9cSEIzW/2aNgFSFydj3SEKwG/ok9BIHXdsRL/TGQRBjD/s4IJHnQYmRGdWxFwXjIIxiQlwvCeMw0ZO6oZCMcRyGOHSjIPEJDgIrmq02HqJrtlV23ph6v+28lM9FsX1l9H9Ba9U2ZvcAybHRWv1YzQtmMGIiG0pztkzF+p0Fh2d5vb+uoefaFaRzY3cEuYHoAj3v2hTafpV6aRsq19C4hsLt0cbzzThOiKEwbWpbQwXwtUvrVMW9mtjtxXBpMprrdHHTZysNfl3p24qrV31H8Wy5VVVP+KUtU7aB0C5P/KV4Tid7GJsuWVOxooM0OLMVrbQROkB7zjJeQtcOdCah2l3/gAXYtzmbN6xfeGF2ZtZgZtQdovXgtWH1UyPKl9XqPWBhbwHTSb/KqcwaXmvMoRTKwJJtUZVzSaGK5MN5OgZB9UxXCzCP0qY5oxfp+Vl2kZ9DnLZqIcDtP//x3yWt0N8L2IlJxefADdIN2NRsBEWzlAvG1Hu2VoimYgUjr9tC8brgS1OJEF0h2ZYlgIhXokQ1bWDbxiRr0B//aWCjDK9VI/J22a2kKNByRfOG6QiQDQP1m4oikS3QUlQf2jlV8JIV1RhgyArteqMQK1gJnJEyUVC1JTDINnjIfiVmxWC9tjMwGYfWxBoOSKQfIC1vKredtcUbDH8iUhAt6gXVm1TcxQO9BuWGPjTcXou8E9zRyULvblHJK8OmpGuoz8AulZCwFWzvATPVdntvF9YlPNga6cMDzPBD/XANqQIH+mnG12xTjsCD/CNgl+7osg1YBbVkCRtmaTZxqssf5uFnnues2iyWVoBy4yFIp7XVFkElYzYEN1Nr0N5krgFCO8/c6qP00Ed47J+Cj+LORyR8BD5a1w1I02w6C/8NzrNr4HfmPkXgo/OelSlWdp+z69huYDP9wIG7ufpmD2IS2Hqj265qbf3o3tGPw+QqtS/czhUaWeijPa7b86petC6oO5sw+3YvK98d0vRkIR31kMb+I4T08x7S4KCnyL0vpJ8fFaQNlK87aH8JSB+Y68WOuR6QA148zGBDyH9hY32d+N/V+sf/s9Z3ih58U/TclDG/FLwyUZa0ylFlLjLeiuJ6Lipne7SmrrYcotiEKSUGftTThcSaqlU9GU0tHbV0aWoJs19BKQpH19TK7iTe4C0re5OtU+ehieq+yRwHnvFygB+cz2+BomRz3dsqdwjGP7fOL1aCt6weYHj2W2WnSHu84yUcPTKuNlgpNLRfwpGjkcycdg7PcEvGan14flO9b2gl9f28pRmcDe9o5TS9xcwDsV/bzqPDwpAEyfBPdDJ21yF/NIbvAT7aFpmTNfxteP92aWUf7Y8rrdylKj631e6MoguU9RtXXfi2b9JzWwLPqHneL5hpZllkdh6zxDNbLef3q5bA63SrZXY0sO6Tib6uenyw/ryV2fHk7INiGfTXgydg59nx2HlTG3s8e+PQO9HaOD8es++je3RCW5L9S7e82wvuXLp53/LS7c1sJpnSdje/YdQXbF//Rq6/ZPZCcvQ3cnfZ7Zjr5vN+y9M9k+4Z9jvg5n6z4w7eHNwR5JbFws7mdsoHu+XJ73lBkJ/wlmdxPNlq/4bglLLVvtn58ZgdzOy5O3+8vfuD+OB3/o/W7h+Ox+4H9wXeOIpPxtD50RylboH34zpZ3amE0mEJ1XcEwzLa9XdLKf1MKc26UlpYDqWdUtlSWt+vlGanXEqL48st/XFrdMLnrfJ4zH5bKQ3GZGcUn4wTquNxwsFdQzR2yWlavT4eq9+C/NFj20UefA2hP3bE3RcRf/mtFeqvZ+lFfn5GL7JzdAnn9os0u6D5RZbbUcNx130KWDi7/B7kv09dT9zTeeZTc8kaPtt+lt39nwynN3RHKhVt1Fv9O35k8hzIcv2YRG4SxYHv4iDRc+xmliS+G2E3ICQK/QgPvx4YWngy/BbVfPLd/fel7/8HUEsHCKNA+swOCQAAWzUAAFBLAQIUABQACAgIAChaLEBFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAKFosQKNA+swOCQAAWzUAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACmCQAAAAA=" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "true" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
[http://www.geogebratube.org/student/m3460 Hela filen kan laddas ner här].
<br>
<br>
 
=== Bevis som utgår från distributiva lagen ===
 
x(c+d) = xc+xd
 
Antag att x = a+b och sätt in i uttrycket ovan.
 
(a+b)c+(a+b)d
c(a+b)+d(a+b)
ca+cb+da+db
ac+bc+ad+bd    V.S.B.


Läs om [http://www.webbmatte.se/display_page.php?id=35&on_menu=231&page_id_to_fetch=668&lang=arabic&no_cache=163542237# distrributiva lagen på wwebbmatte].
== En första läxa ==


{{Khanruta|Hitta faktorerna till ett uttryck:
Det är viktigt att vi kommer igång med att lära oss Geogebra.


[http://www.khanacademy.org/math/algebra/quadtratics/e/solving_quadratics_by_factoring solving quadratics by factoring]}}
Första naturliga ingången är egentligen räta linjen där det blir en tydlig koppling mellan funktion och utseende.  


== Kvadreringsregeln ==
=== GGB-uppgift 1 ===


{{:kvadreringsregeln}}
Ladda ner programmet.


== Konjugatregeln ==
Skriv in en valfri räta linjens funktion.


{{:konjugatregeln}}
Ändra färg och tjocklek på grafen.


=== Diagnos 11 ===
Ändra så att grafens egenskap syns.


[[Lösningar till diagnos 11]]
Mejla filen till din lärare.


'''Rättelse:''' I lösningen till uppgift 6 finns tyvärr inte med att lösningen även har en negativ rot. Detta kommer vi att gå in noggrannare på i avsnitt 1.3 som behandlar andragradsekvationer.
== [[Konjugatregeln Ma2C]] ==


== Ekvationer med x<sup>2</sup>-term ==
== [[Ekvationer med x^2-term]] ==
 
'''Repetition'''
 
Uppgiften från förra lektionen att göra Khan ett tagskulle kunna vara en vettig repetition av föregående vecka.
 
=== Intro ===
 
Detta avsnitt handlar om ingenting kan man säga. Det handlar nämligen om ekvationer med x<sup>2</sup>-termer som försvinner vid förenklingen.
 
=== Räkna uppgifterna: 1245-1258 ===
 
* Uppgift 1251: Här gör du skissen i GeoGebra.
* Uppgift 1257: Läs om en [http://sv.wikipedia.org/wiki/Ellips_%28matematik%29 Ellips på Wikipedia].
** Pröva att göra en ellips i GeoGebra. Ledining skriv in ekvationen (x/a)^2+(y/b)^2=1. Välj själv värden på a och b.
** Sök på Ellipse på GeoGebraTube.org. [[Inte ett facit till ellipsen]].
** Titta på en ellips i Wolfram|Alpha. Skriv in en formel eller skriv ordet Ellipse. [http://www.wolframalpha.com/input/?i=%28x%2F2%29^2%2B%28y%2F11%29^2%3D1 fuskväg]


= Andragradsekvationer =
= Andragradsekvationer =


Vi repeterar föregående avsnitt genom denna övning:
== [[Enkla andragradsekvationer]] ==
 
=== Övning: Pascals triangel ===
 
Gör övningen på sidan 24-25. Titta även på [http://sv.wikipedia.org/wiki/Pascals_triangel Wikipedia om Pascals triangel].
 
'''Inlämning:''' Vi gör övningen på uppkopierat papper med inlämning och rättning.
 
När du är klar med uppgiften jobbar du med Khan Academy. Länkar finns på föregående avsnitt.
 
'''Lösning:''' Så här utvecklar du [[Pascal-algebra|(a+b)<sup>4</sup>]]
 
<html><iframe src="http://phet.colorado.edu/sims/plinko-probability/plinko-probability_en.html" width="800" height="600"></iframe></html>
 
'''Länkar:'''
 
Här finns lite om [http://www.mathsisfun.com/pascals-triangle.html Pascals triangel] och[http://mathforum.org/workshops/usi/pascal/index.html idéer om triangeln]. Här finns [http://www.mathsisfun.com/pascals-triangle.html trianglar att skriva ut] m.m.
Illustration av normalfördelning finns [http://www.mathsisfun.com/data/quincunx.html här].
 
== Enkla andragradsekvationer ==
 
Den här behöver man fundera på en stund. [http://www.geogebratube.org/student/m358 Quadratic equations in early Baghdad]
 
Även nu har vi att göra med andragradsekvationer som är enkla fall av den fullständiga ekvationen.
 
Antingen förkortas x-termerna bort så att man får kvadrattermer kvar att ta roten ur
 
eller
 
så har man ett kvadraten på ett binom (ett parentesuttryck upphöjt till två) som man tar roten ur.
 
I båda fallen blir det en positiv och en negativ rot som svar (eller cdel av svaret men det blir inga imaginära tal eller komplexa rötter i detta avsnitt.
 
== Kvadratkomplettering ==
 
 
=== '''Uppgift:''' Khan Academy ===
 
Lös dessa [http://www.khanacademy.org/exercise/solving_quadratics_by_factoring Khan, relativt enkla andragradsekvationer]. De kan lösas genom att gissa eller faktorisera.
 
''' Härledning av rotformeln '''
 
  <math> ax^2+bx+c = 0, a \ne 0 </math>
  Vi multiplicerar båda sidor med <math>4a \ne 0</math>
  <math> 4a^2x^2 + 4abx + 4ac = 0 </math>
  vi subtraherar <math>4ac</math> från bägge sidor och skriver om
  <math> (2ax)^2 + 4abx = -4ac </math>
  då ser vi att det fattas <math>b^2</math> för kvadratkomplettering - adderas till bägge sidor
  <math> (2ax)^2 + 2(2ax)b + b^2 = b^2-4ac </math>
 
  <math> (2ax + b)^2 = b^2-4ac </math>
  <math> D = b^2-4ac </math>
  D kallas för diskriminanten.  Om den är positiv eller noll så har vi en lösning.
  Om den är lika med noll blir det en dubbelrot annars blir det två reella rötter.
  Om diskriminanten är mindre än noll saknas reella lösningar.
  Vi löser vidare så här:
  <math> 2ax + b = \pm \sqrt{b^2-4ac} </math>
  Vi subtraherar <math>b</math> från bägge sidor.
 
  <math> 2ax  = - b \pm \sqrt{b^2-4ac} </math>
  Vi dividerar med <math>2a \ne 0</math> :
 
  <math> x  = \frac{-b\pm \sqrt{b^2-4ac}}{2a} </math>
  man kan sedan konstarea att :
  <math> x_1  = \frac{-b - \sqrt{b^2-4ac}}{2a} och x_2  = \frac{-b + \sqrt{b^2-4ac}}{2a}</math>
  Nu är vi klara.
 
  Ibland kan det vara bra att veta att man om reella rötter saknas D < 0
  löser de komplexa (imaginära) rötterna så här :
  <math> z  = \frac{-b\pm i\cdot \sqrt{4ac-b^2}}{2a} </math>
 
== Fullständiga andragradsekvationer ==
 
=== pq-formeln ===
 
http://www.youtube.com/watch?v=eQZEtWY_4kE&feature=g-all pq-formeln
 
x<sup>2</sup>+px+q=0
x=-p/2+-((p/2)<sup>2</sup>-q)<sup>0.5</sup>
<br>
<pdf>Peequu-01022012090823.pdf</pdf>
<br>
<br>
Se en film med Michael Bondestam:
<youtube>eQZEtWY_4kE</youtube>
<br>
'''Räkna själv'''
 
'''Lösning:''' 1339 har jag gjort i ggb och den finns på hårddisken.
 
Mario om nytan med andragradsekvationer:
<br>
<youtube>goYnB61nrjg</youtube>
<br>
 
== Andragradsekvationer och rötter ==
[[Fil:Exempel1_sid_35_Ma2c.PNG|300px|right|CC By --[[Användare:Hakan|hakan]] 3 februari 2012 kl. 17.50 (UTC)]]
En andragradsekvation kan ha
två reella rötter ''eller''
en dubbelrot ''eller''
två komplexa rötter
 
Detta är på sid 35-37 i boken.
 
'''Diagnosen'''
 
Resultatet på diagnosen var inte bra. Ni behöver räkna mer! Från och med nu gäller ett beting för varje lektion. Det är uppgifter som ni måste göra och visa upp. Om ni inte har godkända upvisade uppgifter från någon lektion måste ni gå på extramatten. Betinget är att göra alla svarta uppgifter.
 
Genomgång av diagnosen: [[Facit till Diagnos 12]]
 
== Komplexa tal ==
 
 
=== Teori ===
 
Roten ur -1 = i.
i<sup>2</sup> = -1
 
Imaginärdel, realdel
 
z = a + bi
 
'''Läs mer:''' [http://sv.wikipedia.org/wiki/Komplexa_tal Komplexa tal på wikipedia]
 
=== Vad ska man ha komplexa tal till? ===
 
* Komplexa tal '''används''' när man räknar på växelström.
** Titta på denna [http://www.tsl.uu.se/~pomp/elektroteknik/del_3_a_liten.pdf ppt från Uppsala].
** [http://sv.wikipedia.org/wiki/J%CF%89-metoden j-omegametoden]
 
=== Komplexa rötter ===
 
[http://www.wolframalpha.com/input/?i=x^2%3D-16 x<sup>2</sup> = -16] har ingen reell rot men däremot två komplexa. Det beror på att lösningen är roten ut ett negativt tal. Roten ur -16 är +4i respektive -4i.
 
[http://www.wolframalpha.com/input/?i=x^2%2B3x%2B16%3D0 x<sup>2</sup>+3x+16=0] har också två komplexa rötter fast här beror varje rot av både en realdel och en imaginärdel.
 
== Rotekvationer ==
 
'''Teori'''
 
Rotekvationer innehåller x-termer och roten ur x-termer. Man löser dem genom att kvadrera båda leden.
 
Viktigt att kolla om man har falska rötter.
 
'''Berätta om SI'''
 
Vi har SI-lektioner på onsdagar 16.30.
 
'''Supplemental Instruction'''- möten är ett komplement till övriga undervisningsmoment som föreläsningar och övningar. På SI-möten som hålls av en äldre elektroteknolog får du möjlighet att lära dig att bearbeta kursinnehållet för att öka förståelsen. SI-ledaren är i detta avseende inte en lärare utan en mötesledare för studenterna. På SI-möten lär sig studenterna att själva arbeta med kursen med målet att öka sin förståelse. SI-ledaren är i detta avseende inte en lärare utan snarare en mentor för studenterna.
Meningen är att studenterna med hjälp av SI-ledaren lär sig terminologin inom ämnet, att själva prioritera inom kursen och att angripa problem. Målsättningen är att denna träning skall ge studenterna en metodik som de kan ha stor nytta av i senare kurser. Supplemental Instruction är ingen stödundervisning utan syftar till att förbättra alla studenters studieteknik och analytiska förmåga och därmed förbättra studieresultaten.
 
'''Film'''
 
Rotekvationer med hjälp av substitution kunde vara ett alternativ att titta på.
 
== Problemlösning med ekvationer ==
 
=== Professionell matte ===
 
Har ni tänkt på att det är ett tag sedan vi gjorde matte som man har nytta av i vardagen? Kvadreingsregeln, konjugatregeln, kvadratkompletteringen och pq-formel hör inte till vardagsmatten. De hör till den professionella matten. Sådan matte som ingenjörer använder.
 
=== Vad ska man ha andragradsekvationer till? ===
 
De används i spel till exempel.
 
* Wikipedia om projectile motion
* [[Programmering_och_simulering#Fysiken_bakom_spelen_-_inspiration_till_matten|Här finns länkar om fysikmotorn bakom Angry Birds och mycket annat]]
* Det finns [[Flashexempel_för_undervisning:_Två_bollar|ett exempel med två bollar som faller]] och där den ena även far i x-led. Banan beskriver en parabel och det är ett klassiskt exempel på en andragradsekvation. Du kan se Action Script-koden.
 
=== PhET ===
 
<br>
<html><iframe src="http://phet.colorado.edu/sims/projectile-motion/projectile-motion_en.html" width="800" height="600"></iframe></html>
<br>
<br>
En idé kan vara att ta en screenshot på en projektilbana från PhET-simuleringen ovan och klistra in i GeoGebra. Sedan sätter man tre eller fler punkter på kurvan och anpassar till en andragradsekvation. Det visar om inte annat bakvägen att fysiken innehåller andragradsfunktioner. Om man är osäker på hur man anpassar punkter till en funktion så har jag gjort det med mätvärdena från laborationen på [[Laborationer_i_Fysik_A#GeoGebra|tyngdacceleration]].
 
=Ekvationslösning med faktorisering =


Måndagslektionen kommer att vigas åt utvärderingsåterkoppling och jag hinner blott gå igenom lösningen till Diagnosen.
== [[Fullständiga andragradsekvationer]] ==


Diagnosen blir läxa att göra om hemma och denna gång ska den ha alla rätt. Det gäller alla. Facit kommer upp på tisdag så kan alla rätta själva.
== [[Kvadratkomplettering]] ==
* [[Facit till Diagnos 13]]


På tisdag som är en lång lektion kommer vi att göra uppdelning i faktorer både med konjugatregeln och kvadreringsreglerna om det går.
== Diagnos 2 med pq-formeln ==


== Uppdelning i faktorer med konjugatregeln ==
{{print|[http://wikiskola.se/images/Snabbdiagnos2_kvadrerings_och_pq.pdf Snabbdiagnos 2]}}


Först ska vi [[repetera konjugatregeln]] med ett lösblad där det är rad snabba uppgifter. Dessa uppgifter bör klaras av på mindre än tre minuter.
== [[Andragradsekvationer och rötter]] ==


Vi kör samma övning som i måndags ävan idag.
== [[Komplexa tal Ma2C]] ==


Avsluta med att ge nästa lösblad som läxa .
== [[Rotekvationer]] ==


== Uppdelning i faktorer med kvadreringsreglerna ==
== [[Problemlösning med ekvationer]] ==


Här ska vi också [[repetera kvadreringsreglerna]] med ett lösblad.
=[[Ekvationslösning med faktorisering]] =


== Faktorisering och ekvationer ==
== Faktorisering och ekvationer ==
Rad 366: Rad 63:
'''Dagens beting:''' 1426-1430
'''Dagens beting:''' 1426-1430


== Dataövning - konsekutiva tal ==
== [[Dataövning - konsekutiva tal]] ==
[[Fil:Fredrik_problem_konsekutiva_tal.jpg|300px|right|Fredriks lösning.]]
 
'''Del ett''' (n-1)(n+1)+1
 
'''Del två'''
 
Del tv är svårare. Det handlar om fyra konsekutiva tal. Addera ett till produkten av de fyra talen och ta roten ur. Detta ska bli ett heltal.
* [http://www.wolframalpha.com/input/?i=sqr%28n%28n%2B1%29%28n%2B2%29%28n%2B3%29%2B1%29 Wolfram|Alpha] har en lösning men ingen förklaring.
* Med hjälp av den ledtråden från Wolfram ser [[Media:Konsek_he-13022012163805.pdf|min lösning ut så här]].
* [[Media:Tanja_konsekutiva_tal.pdf|Tanja]] löser uppgiften genom att pröva.
* Fredrik använder kvadratkomplettering och substitution för att lösa uppgiften. Lösningen syns i bilden till höger.
* [[Media:Konsek_charles-13022012163848.pdf|Charlie i NV11]] löser det genom att hitta mönster i de tal han prövar med och ...
 
== Prov tisdag vecka 7 ==
 
'''Diagnos 14'''
 
* [[Media:Veckodiagnos14.pdf|Diagnos 14]]
* [[Media:Veckodiagnos14-Facit.pdf|Diagnos 14 Facit]]
 
'''Repetition på fredag och måndag'''
 
'''Uppgift:''' Khan Academy
 
# [http://www.khanacademy.org/exercise/multiplying_expressions_1 Khan om hur man multiplicerar binom] ska du verkligen öva på.
# Lös dessa [http://www.khanacademy.org/exercise/solving_quadratics_by_factoring Khan, relativt enkla andragradsekvationer]. De kan lösas genom att gissa eller faktorisera.
 
'''Uppgifter'''
 
* Läs sammanfattningen på sidan 54.
* Gör Test 1 på sidan 55.
 
'''pappersövningar'''
 
# Öva ekvationer (= Extrablad ekvationer): finns bara på papper
# Faktorisering: finns bara på papper
# [[Media:Öva_konjugatregeln.pdf|Öva konjugatregeln]]
# [[Media:Öva_kvadreringsreglerna.pdf|Öva kvadreringsreglerna]]
# Öva enkla andragradsekvationer:  finns bara på papper
# [[Media:Öva_pq-formeln.pdf|Öva pq-formeln]] <font color red>Senaste tillskottet</font color red>
 
'''Provet''' skall vara tisdag vecka 7 (ligger på SchoolSoft).


== Omprovet ==
== [[Repetition inför prov Algebra Ma2C]] ==


Vi räknar klart det gamla provet (åtminstone E-uppgifterna) på extramatten och i slutet av lektionen gör vi ett förenklat prov med E-del för sig och C/A-del för sig.
== Facit och bedömning ==


Så får vi se hur det går.
Christers bedömningsmall från mellandagen bör finnas [[media:Prov_1_-_Lösnförslag.ppsx| här]]. Lösningen är till Prov 1 ver 4 (2013)

Nuvarande version från 3 januari 2016 kl. 21.20

Intro Algebra Ma2C

Förenkling av uttryck

Ekvationer Ma2C

Kvadrerings- och konjugatregler

Flipped lesson: arbeta igenom innehållet till nästa lektion innan lektionen. Det vinner du på!

Parentesmultiplikation

Kvadreringsregeln Ma2C

En första läxa

Det är viktigt att vi kommer igång med att lära oss Geogebra.

Första naturliga ingången är egentligen räta linjen där det blir en tydlig koppling mellan funktion och utseende.

GGB-uppgift 1

Ladda ner programmet.

Skriv in en valfri räta linjens funktion.

Ändra färg och tjocklek på grafen.

Ändra så att grafens egenskap syns.

Mejla filen till din lärare.

Konjugatregeln Ma2C

Ekvationer med x^2-term

Andragradsekvationer

Enkla andragradsekvationer

Fullständiga andragradsekvationer

Kvadratkomplettering

Diagnos 2 med pq-formeln

Du kan printa denna! Snabbdiagnos 2


Andragradsekvationer och rötter

Komplexa tal Ma2C

Rotekvationer

Problemlösning med ekvationer

Ekvationslösning med faktorisering

Faktorisering och ekvationer

Onsdag

Repetera lösbladet från förra lektionen en gång till. I övrigt struntar vi i beting på faktorisering med kvadreringsregelerna.

Dagens beting: 1426-1430

Dataövning - konsekutiva tal

Repetition inför prov Algebra Ma2C

Facit och bedömning

Christers bedömningsmall från mellandagen bör finnas här. Lösningen är till Prov 1 ver 4 (2013)