Geometri Ma1C

Från Wikiskola
Hoppa till navigering Hoppa till sök

Intro eller fördjupning

TEDEd om Pixar och matematik Sub Division borde göra sig fint i GeoGebra. Testa.

lektion 20 - Geometriska satser och bevis

Slag av trianglar

En triangel är:

  • Spetsvinklig om alla vinklar är mindre än 90 grader
  • Rätvinklig om en vinkel är rät (90 grader eller [math]\displaystyle{ \pi/2 }[/math] radianer)
  • Trubbvinklig om en av vinklarna är större än 90 grader
  • Likbent om två sidor är lika långa
  • Liksidig om alla sidor är lika långa

Vinklar

Supplementvinkeln till en vinkel i en triangel kallas yttre vinkel.

Vinkelsumma

En linje som dras genom ett av triangelns hörn och är parallell med motstående sida, visar att triangelns vinkelsumma är 180 grader.

Höjder

En triangels höjder är normaler dragna från en sida, eller en sidas förlängning, till motstående hörn. Höjderna skär varandra i en punkt.

Texten om trianglar kommer från Wikipedia.

Lektion 21 - Geometriska figurer

Kvadrat

Alla är de fyrhörnings, men vad heter de speciella formerna? Vilken blir en rektangel, en parallellogram, en parallelltrapet, en romb? Dra i punkterna. Från: http://www.geogebratube.org/material/show/id/21159

Mer om fyrhörningar här: http://matmin.kevius.com/fyra.php

Fler figurer

Det finns massor av rymdgeometri på denna franska sida. Leta efter en/ett:

  • Romb
  • Parallelltrapets
  • Triangel
  • Cirkel
  • Cirkelsektor
  • Prisma
  • Cylinder
  • Pyramid
  • Kon
  • Klot

Cirkelns area

EN mycket bra GGB

en annan bra visualisering av cirkelns area

Triangelns area

Triangelns tyngdpunkt ligger i skärningspunkten för bisektriserna. Testa på geogebra.

Arean för en triangel är basen * höjden / 2. Det gäller även om höjden faller utanför basen. Se exempel i geoGebra nedan:

Här finns GGB-filen

Triangelns egenskaper

Geometriska figurer

All bilder i galleriet nedan är CC Från WikiMedia Commons.

Bevis: Vinkelsumman i en triangel är 180o

Bevis:

Gör bevisen på sidan 116.

Läs mer:

Lektion 22 - Pythagoras sats

Lektion 23 - Likformighet

Lektion 24 - Trigonometri

Trigonometri grundläggande

CC By
CC Wikimedia.org

Andra länkar om trigonometri

Definitioner:

  • Motstående katet
  • Närliggande katet
  • Sin v = motstående katet / hypotenusan
  • Cos v = närliggande katet / hypotenusan
  • Tangens v = motstående katet / närliggande katet

Digitalt

Definition: Ta reda på vinkeln

Om y = roten ur x så är 'y2 = x. Dessa två hänger ihop och den ena kan ses som den omvända av den andre. Detta kallas inversen, den inversa funktionen.

På samma sätt som det finns en invers funktion till kvadraten på ett tal, nämligen roten ur så finns det en invers funktion till sinus och cosinus.

Om sin v = a/h då är v = arcsin(a/h) eller sin-1(a/h)
Om cos v = b/h då är v = arccos(b/h) eller cos-1(b/h)
0ch på samma sätt för tangens

Lektion 25 - Vektorer

GeoGebra

Länken går till min sida med GeoGebra-grejor.

Jag vill att ni ska ladda ner programmet och börja lära er det. Vi kommer att lära oss tillsammans för jag är själv ingen fena på det.

Här finns en GeoGebrafil med addition av vektorer. Lek med den och försök göra något med vektorer och trigonometri.

Kunskapskontroll kapitel 3

Tyvärr var inte resultaten på Diagnos 6 och 7 tillräckligt bra för att vi ska kunna känna oss helt klara. Ni kommer därför att få en uppgift som ni ska göra individuellt och lämna in. Ni får göra den hemma eller i skolan på er lediga tid. Det är lämpligt att ni samarbetar. Uppgiften är att du ska lämna in snygga fullständiga lösningar på diagnos 6 och 7. Detta ska vara klart senast fredagen den 11 november.

Ni kan få papper på måndag men Diagnos sex finns här och Diagnos 7 finns här om du vill börja med en gång.

Detta är en kombination av hemtenta och samarbetsövning.

Uppgiften: Du ska göra om diagnos 6 och 7. Du kan jobba hemma eller på rasterna i skolan. Du ska jobba själv men ni får gärna samarbeta. Det är inget problem om det kommer in liknade lösningar men jag accepterar inga exakta kopior.

Krav för godkänt: Minst åtta poäng på varje diagnos. Extraberöm för snygga lösningar.

Mål:

  • Ni ska kunna geometrin
  • Ni ska öva er på att samarbeta och repetera med hjälp av boken.
  • Ni ska upptäcka fördelarna med att plugga tillsammans

Snygga lösningar:

  • Skriv alla dina lösningar på rutade papper i A4-format.
  • Skriv ditt namn på varje blad. Skriv lösningens nummer.
  • Använd luftiga marginaler.
  • Ha luft mellan uppgifterna.
  • Skriv av det viktiga från uppgiften.
  • Använd figurer.
  • Förklara vilka satser och formler du använder
  • Redovisa dina beräkningar
  • Stryk under svaret eller skriv "Svar:"