''Texten om trianglar kommer från [http://sv.wikipedia.org/wiki/Triangel Wikipedia].''
== Lektion 21 - Geometriska figurer ==
=== Kvadrat ===
Alla är de fyrhörnings, men vad heter de speciella formerna? Vilken blir en rektangel, en parallellogram, en parallelltrapet, en romb? Dra i punkterna.
Mer om fyrhörningar här: http://matmin.kevius.com/fyra.php
== Fler figurer ==
Det finns massor av rymdgeometri på [http://dmentrard.free.fr/GEOGEBRA/Maths/Espace/Espace.htm denna franska sida]. Leta efter en/ett:
* Romb
* Parallelltrapets
* Triangel
* Cirkel
* Cirkelsektor
* Prisma
* Cylinder
* Pyramid
* Kon
* Klot
=== Cirkelns area ===
[http://www.geogebratube.org/student/m279 EN mycket bra GGB]
[http://www.geogebratube.org/student/m23525 en annan bra visualisering av cirkelns area]
=== Triangelns area ===
Triangelns tyngdpunkt ligger i skärningspunkten för bisektriserna. Testa på [http://www.geogebra.se/ma_b/geometri/triangel_tyngdpunkt_t.html geogebra].
Arean för en triangel är basen * höjden / 2. Det gäller även om höjden faller utanför basen. Se exempel i geoGebra nedan:
'''Bevis: Vinkelsumman i en triangel är 180<sup>o</sup>'''
* GeoGebras hemsida har ett [http://www.geogebra.se/ma_a/geometri/triangel_vinkelsumma_bevis/triangel_vinkelsumma_bevis/triangel_vinkelsumma_bevis_t_vl.html bevis att vinkelsumman är 180<sup>o</sup>]
*[http://www.mathopenref.com/triangleinternalangles.html testa vinkelsumman i praktiken]
'''Bevis:'''
Gör bevisen på sidan 116.
'''Läs mer:'''
* [http://www.webbmatte.se/display_page.php?id=150&on_menu=802&page_id_to_fetch=2026&lang=swedish&no_cache=1209563336 Webbmatte om geometriska figurer]
Om y = roten ur x så är 'y2 = x. Dessa två hänger ihop och den ena kan ses som den omvända av den andre. Detta kallas inversen, den inversa funktionen.
På samma sätt som det finns en invers funktion till kvadraten på ett tal, nämligen roten ur så finns det en invers funktion till sinus och cosinus.
Om sin v = a/h då är v = arcsin(a/h) eller sin-1(a/h)
Om cos v = b/h då är v = arccos(b/h) eller cos-1(b/h)
0ch på samma sätt för tangens
Tyvärr var inte resultaten på Diagnos 6 och 7 tillräckligt bra för att vi ska kunna känna oss helt klara. Ni kommer därför att få en uppgift som ni ska göra individuellt och lämna in. Ni får göra den hemma eller i skolan på er lediga tid. Det är lämpligt att ni samarbetar. Uppgiften är att du ska lämna in snygga fullständiga lösningar på diagnos 6 och 7. Detta ska vara klart senast fredagen den 11 november.
Detta är en kombination av hemtenta och samarbetsövning.
Uppgiften: Du ska göra om diagnos 6 och 7. Du kan jobba hemma eller på rasterna i skolan. Du ska jobba själv men ni får gärna samarbeta. Det är inget problem om det kommer in liknade lösningar men jag accepterar inga exakta kopior.
Krav för godkänt: Minst åtta poäng på varje diagnos. Extraberöm för snygga lösningar.
Mål:
Ni ska kunna geometrin
Ni ska öva er på att samarbeta och repetera med hjälp av boken.
Ni ska upptäcka fördelarna med att plugga tillsammans
Snygga lösningar:
Skriv alla dina lösningar på rutade papper i A4-format.
Skriv ditt namn på varje blad. Skriv lösningens nummer.