Exponentialekvationer: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 18: Rad 18:


=== Grafisk löning ===
=== Grafisk löning ===
====  Vatten i termos ====
[[Fil:Exponentialfunktion_vatten_svalnar_i_termos.png|600px|right]]
Figuren nedan visar temperaturen hos vatten som får svalna i en termos. Mätvärdena har lagts i en lista som heter avsvalning i GeoGebra. Därefter har kommandot RegressionExp[avsvalning] använts för att anpassa en exponentiell funktion till värdena i listan.
Du ser på funktionen f(x) att basen är 0.98 (= förändringsfaktorn)
{{clear}}


=== Logaritmera ekvationer  ===
=== Logaritmera ekvationer  ===

Versionen från 14 februari 2018 kl. 15.26

Mål för undervisningen xxx

Här undersöker vi xxx.

Swayen till detta avsnitt: Exponentialekvationer


läromedel: Exponentialekvationer



Teori

2.47 min.
Definition
[math]\displaystyle{ }[/math] är en xxx


Grafisk löning

Vatten i termos

Figuren nedan visar temperaturen hos vatten som får svalna i en termos. Mätvärdena har lagts i en lista som heter avsvalning i GeoGebra. Därefter har kommandot RegressionExp[avsvalning] använts för att anpassa en exponentiell funktion till värdena i listan.

Du ser på funktionen f(x) att basen är 0.98 (= förändringsfaktorn)

Logaritmera ekvationer

Dessa och liknade ekvationer löser man genom att logaritmera båda sidorna.

Varför är det så?

Om 102a+3b = 10y så innebär det att 2a+3b = y

Om log(2a+3b) = log y så innebär det att 2a+3b = y

Om log 10x = log 27 så innebär det att 10x = 27

Om man går åt andra hållet kan man säga att om 10x = 27 så innebär det att log 10x = log 27

Nu har vi hittat en metod att lösa ekvationer med exponentialfunktioner. Den kallas att logaritmera.

Exempel

Lös ekvationen 102x = 200

Logaritmering av båda sidorna ger

log 102x = log 200

2x = log 200

x = log (200) /2

Aktivitet

Uppgift
Lös verkliga problem
Tillämpningar på exponentiell förändring med några uppgifter och övningar


Lär mer

Exit ticket