Tillämpningar på exponentiell förändring

Från Wikiskola
Hoppa till navigering Hoppa till sök


[redigera]

GeoGebra har flera funktioner för att beräkna logaritmer. Prova hur det fungerar med några kända logaritmer, exempelvis [math]\displaystyle{ log(100) }[/math].

Du ser att GeoGebra har en funktion för tio-logaritmen, [math]\displaystyle{ Log10(\lt x\gt ) }[/math]. Men om du skriver [math]\displaystyle{ Log(1000) }[/math] får du inte lösningen 3. Det beror på att GeoGebra skriver den naturliga logaritmen (som ofta förkortas ln x) som Log. Den naturliga logaritmen har basen e, där e är ungefär 2.72.

Om du vill styra vilken bas som används väljer du kommandot [math]\displaystyle{ log( \lt b\gt , \lt x\gt ) }[/math] där första argumentet [math]\displaystyle{ \lt b\gt }[/math] är basen och [math]\displaystyle{ \lt x\gt }[/math] det tal du vill logaritmera.

Prova följande:

log(2.718)
log2(128)
log(3,27)

Observera att logaritmlagarna gäller för alla baser.

Om du har en kvot av två logaritmer spelar det ingen roll vilken bas du väljer vid beräkningen. Prova till exempel [math]\displaystyle{ \frac{log 9}{log 2} }[/math] i olika baser (dock samma bas i täljare och nämnare).