Exponentialekvationer

Från Wikiskola
Hoppa till navigering Hoppa till sök


[redigera]
Mål för undervisningen Exponentialekvationer

Målet är att vi ska lära oss att lösa exponentialekvationer genom logaritmering.


Exempel på exponentialekvationer
Logaritmer med olika baser, av Andreas Borg

En ekvation där variabeln sitter i exponenten i, exempelvis [math]\displaystyle{ 5^x = 12 }[/math], kallas för exponentialekvation.

Du löser exponentialekvationer algebraiskt genom att använda logaritmer.

Verktyg för ekvationslösning

Genom att vi har lärt oss logaritmlagarna har vi nu fler verktyg vid ekvationslösning. Nedan kommer en sammanfattning

  1. Använd operationer så att variabeln står själv på en sida av "="
    • Addition ( + )
    • Subraktion ( - )
    • Multiplikation ( × )
    • Division ( ÷ )
    • Logaritmera ( log || lg || ln )
  2. När operationer används på ekvationen måste de appliceras på båda sidorna av "="
  3. Känna igen välkända formler och regler för att förenkla eller utveckla
    • Potenslagarna
    • Logaritmlagarna
    • Konjugat-och Kvadreringsreglerna

Skillnaden funktion - ekvation

Vilken är egentiligen skillnaden mellan en exponentialfunktion och en exponentialekvation?

Exponentialfunktionen har ett y-värde som korresponderar till ett x-värde. Den är kontinuerlig och definitionsmängden respektive värdemängden utgörs av de reella talen.

Om exponentialfunktionen sätts lika med ett värde eller en annan funktion får vi en exponentialekvation. Grafiskt är lösningen skärningspunkten mellan de två graferna, den för exponentialfunktionen och den för den andra funktionen (y = konstant eller vilken funktion som nu representerar högerledet i ekvationen).

Definition
[math]\displaystyle{ f(x) = C \cdot a^{x} }[/math] är en exponentialfunktion


[math]\displaystyle{ C \cdot a^{x} = B }[/math] är en exponentialekvation


Exponentialfunktionerna kan skrivas på flera former, exempelvis

  • [math]\displaystyle{ f(x) = C \cdot e^{kx} }[/math]
  • [math]\displaystyle{ f(x) = C \cdot a^{x} }[/math]
  • [math]\displaystyle{ f(x) = e^{kx + a} }[/math]

Metod - Logaritmera ekvationer

Dessa och liknade ekvationer löser man genom att logaritmera båda sidorna.

Varför är det så?

Om [math]\displaystyle{ 10^{2a+3b} = 10^y }[/math] så innebär det att [math]\displaystyle{ 2a+3b = y }[/math]

Om [math]\displaystyle{ log(2a+3b) = log y }[/math] så innebär det att [math]\displaystyle{ 2a+3b = y }[/math]

Om [math]\displaystyle{ log 10^x = log 27 }[/math] så innebär det att [math]\displaystyle{ 10^x = 27 }[/math]

Om man går åt andra hållet kan man säga att om 10x = 27 så innebär det att

[math]\displaystyle{ log 10^x = log 27 \quad }[/math] och då är ju enligt logaritmlagarna
[math]\displaystyle{ x\cdot log 10 = log 27 \quad }[/math] och
[math]\displaystyle{ x = log 27 }[/math]

Nu har vi hittat en metod att lösa ekvationer med exponentialfunktioner. Den kallas att logaritmera.