Potensekvationer: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) (→Teori) |
Hakan (diskussion | bidrag) |
||
Rad 39: | Rad 39: | ||
Undersök GGB:n. | Undersök GGB:n. | ||
== Öva själv == | |||
Potensekvationer, av Svetlana Yushmanova. | |||
<html> | |||
<iframe scrolling="no" title="Potensekvationer" src="https://www.geogebra.org/material/iframe/id/TKMKBxDc/width/1000/height/500/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="1000px" height="500px" style="border:0px;"> </iframe> | |||
</html> | |||
Potensekvationer 2 | |||
<html> | |||
<iframe scrolling="no" title="potensekvationer 2" src="https://www.geogebra.org/material/iframe/id/HHsDJyuv/width/1000/height/600/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false" width="1000px" height="600px" style="border:0px;"> </iframe> | |||
</html> |
Versionen från 11 september 2017 kl. 06.19
|
Teori
Potensekvationen:
[math]\displaystyle{ x^a = b }[/math]
där a och b är reella tal men a är ofta 1/3, 1/2, 2 eller 3.
Lösning: balansera ekvation genom exponentiering.
- [math]\displaystyle{ (x^a)^{\frac{1}{a}} = b^{\frac{1}{a}} }[/math]
- [math]\displaystyle{ x = b^{\frac{1}{a}} }[/math]
Observera: Vid jämna exponenter finns det två lösungar, en positiv och en negativ.
Exempel:
- [math]\displaystyle{ x^2 = 4 }[/math]
- [math]\displaystyle{ x = 4^{\frac{1}{2}} }[/math]
- [math]\displaystyle{ x = \pm 2 }[/math]
Tänk på att roten ur ett tal (ännu, med det vi vet) inte är negativ.
Aktivitet
Undersök GGB:n.
Öva själv
Potensekvationer, av Svetlana Yushmanova.
Potensekvationer 2