Aritmetik för Ma1A: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 8: Rad 8:


== [[Negativa tal]] ==
== [[Negativa tal]] ==
== [[Tabeller och diagram]] ==


== Lektion 4 - Primtal ==
== Lektion 4 - Primtal ==

Versionen från 4 september 2014 kl. 08.31

Tal

Kul länk: What's special about this number?

De fyra räknesätten

Prioriteringsreglerna

Negativa tal

Tabeller och diagram

Lektion 4 - Primtal

Titta gärna på avsnitten om faktorisering och primtal för grundskolan.

En väl blandad kortlek är unik

TEDEd

Teori

Primtal är bara delbara med ett och sig själva. (positiva tal)
Alla positiva tal är uppbyggda av primtal
(man dela upp dem i faktorer som är primtal) 
jämna tal är delbara med två
om siffersumman är delbar med ttre så är talet delbart med tre
om talet slutar på noll eller fem är det delbart med fem
  • Pröva gärna att använda Excel för att undersöka om ett tal är ett primtal.

Datorövning. Lär dig mer om ett tal genom WolframAlpha. Du ser bland annat hur talet delas upp i faktorer. Skriv bara talet på raden och klicka enter.

Datorövninga från matteva. Delbarhetsreglerna

  • Här kan det vara bra att känna till att:
Ett helt tal är delbart med
2, 	om sista siffran (entalet) är jämt eller 0.
3, 	om talets siffersumma är delbar med 3.
4, 	om det tal, som bildas av de två sista siffrorna är delbart med 4.
5, 	när sista siffran är 0 eller 5.
6, 	när villkoren för 2 och 3 både är uppfyllda.
7, 	när talets tiotal minus dubbla antalet av talets ental är delbart med 7.
           Ex.:392 är delbart med 7 (39-4=35)
8, 	när det tal, som bildas av de tre sista siffrorna är delbart med 8.
9, 	när talets siffersumma är delbar med 9.
10, 	när talets sista siffra är en nolla.

Denna lista kommer från denna sida

Primtal.

Erathostenes, primtal och faktorisering.

Lektion 5 - Tal i bråkform

Glöm inte att repetera med webbmatte.se men du kan även repetera på wikiskolas bråksida.

Definition

Bråket a/b har täljare a och nämnare b

Satser

Man kan förlänga bråk
Man kan förkorta bråk
Då behöver man ofta faktorisera
Vid addition och subtraktion måste bråken göras liknämniga. Minsta gemensamma nämnare.

Multiplikation av bråk

a/b * c/d = ac /  bd

Visa grafiskt: 2/3 * 1/4

Division av bråk

a/b / c/d = a/b * d/c = ad / bc

Rita 6m-repet som delas i bitar om 3/4

Bråk, addition, subtraktion, blandad form.

MGN. Minsta gemensamma nämnaren.

Klurigt bråktal.

Förkorta bråk så långt det går.

M Bondestam ger en förklaring av multiplikation och division med bråk.

Övning

Lektion 6 - Potenser

[redigera]
Mål för undervisningen Potenser

Du kommer att lära dig vad potenser är och de räkneregler som gäller för potenser.

  • Grundpotensform
  • Potenser
  • Rötter


En potens är ett uttryck som består av en bas och en exponent.

I sin enklaste form definierar vi potenser som resultatet av upprepad multiplikation.

Exempel
43 (utläses 4 upphöjt till 3) blir 4 · 4 · 4 = 64.


Potenser underlättar hanteringen (bland annat multiplikation och division) av stora tal. Primtalsfaktorisering är en stor del i det, men när vi väl har våra faktorer ser vi att de har en tendens att återkomma, då snyggar potenser upp vårt uttryck.

När basen är 10 och exponenten är ett heltal kallar vi potensen för en tiopotens. Med tiopotenser kan vi beskriva storleksordningen av reella tal.

Potenser kommer även senare att bli vår koppling till logaritmer.

Potenslagarna

Följande potenslagar gäller för potenser med reella exponenter.

Potenslagarna

Några förklaringar ("bevis")

Viktigt

Vi kan förklara negativa exponenter (tredje exponentieringsregeln), [math]\displaystyle{ a^{-n} = \frac{1}{a^n} }[/math]

med ett exempel (inte ett formellt bevis)

[math]\displaystyle{ \frac{1}{a^3}= \frac{a^2}{a^5} = a^{2-5} = a^{-3} }[/math]

Man kan även visa nollregeln:

[math]\displaystyle{ 1 = \frac{a^n}{a^n} = a^{n-n} =a^0 }[/math]


Grundpotensform

Definition
Grundpotensform

Ett tal är skrivet på grundpotensform om:

[math]\displaystyle{ a \cdot 10^n, där 1 \le a \lt 10 }[/math]


Grundpotensform är ett kompakt sätt att skriva tal som heltalsexponenter med 10 som bas. Formen används framför allt för att skriva tal som är mycket stora eller mycket små.

En regel är om man vill ta ut grundpotensen på 134 000 000, så förminskar vi talet så många gånger så att talet blir mellan 1 och 10. Du behöver nu multiplicera talet med ett tal som motsvarar hur många gånger mindre du gjorde talet, i det här fallet 100 000 000 = 10 upphöjt i 8. Svaret blir alltså 1,34 · 108

  • 101 = 10
  • 102 = 100
  • 103 = 1 000
  • 106 = 1 000 000
  • 109 = 1 000 000 000
  • 1020 = 100 000 000 000 000 000 000
  • 10−1 = 1/10 = 0,1
  • 10−3 = 1/1 000 = 0,001
  • 10−9 = 1/1 000 000 000 = 0,000000001

Genom att använda grundpotensform kan ett stort tal som 156 234 000 000 000 000 000 000 000 000 lättare skrivas som 1,56234·1029, och ett litet tal som 0,0000000000234 kan skrivas som 2,34·10−11.

Ett tal skrivet i grundpotensform kan delas upp i två delar, först siffervärdet, därefter tiopotensen. För att talet ska vara skrivet i grundpotensform krävs att siffervärdet är ett tal som är större än eller lika med 1 och mindre än 10.

De flesta kalkylatorer (miniräknare) och vissa datorprogram utelämnar bas-siffran 10 och använder bokstaven E (som i Exponent) istället, till exempel 1,56234 E29. Detta E ska inte förväxlas med talet e. Det finns även datorprogram (till exempel programmeringsspråket QBasic) som använder bokstaven D istället då man anger tal på dubbelprecisionsformat.

Wikipedia skriver om Grundpotensform

[redigera]

Pröva på potensreglerna själv. Dra pricken "typ av uppgift" för att testa dig själv på olika regler. Välj visa svar när du vill kontrollera din egen lösning.

Sedan kommer en snarlik övning. Du kan välja att göra den ena eller den andra eller båda för att få problemen presenterade på lite olika sätt.

[redigera]

Kopiera texten till din dator och skriv rätt regel på strecket.

Förenkling Skriv regeln
[math]\displaystyle{ {(x^3)}^4 = x^{12} }[/math] _______________________
[math]\displaystyle{ x^0 = 1 }[/math] _______________________
2 + 3 * 4 = 14 _______________________
[math]\displaystyle{ { \left( {x \over y }\right)^7} = {x^7 \over y^7} }[/math] _______________________
[math]\displaystyle{ x^2 \cdot x^5 = x^{7} }[/math] _______________________
[math]\displaystyle{ {(x \cdot y)}^{19} = x^{19} \cdot y^{19} }[/math] _______________________
[math]\displaystyle{ {x^5 \over x^3} = x^{2} }[/math] _______________________
[redigera]

På vissa ställen i reportaget har ljudet suddats bort.

Din uppgift är att beräkna vilka värden som saknas.

Du får googla så mycket du vill för att förstå hur du ska göra.

[redigera]

Kluring: Tala om vilket tal som är störst utan att använd miniräknare.

[math]\displaystyle{ 2^{36} }[/math] eller [math]\displaystyle{ 3^{24} }[/math]

[redigera]
Programmeringsuppgift

Python-hjälp Fler uppgifter


Mål för undervisningen Kom igång med programmering i matematiken.

Målet är att du ska köra ditt första program för att utföra matematiska beräkningar. Du bör testa att modifiera algoritmen så att dina beräkningar blir mer effektiva.

Målet är inte att du ska lära dig programmering på matematiklektionen men det är oundvikligt att du ändå lär dig lite Python-kod.


Gissa talet

Gissa talet är en programmeringsuppgift som passar perfekt in på detta område.

Uppgift
Gissa ett tal
  1. Kör programmet tillsammans med en kompis.
  2. Kör det flera gånger. Turas om att vara den som kör programmet och den som gissar. Notera hur många gissningar som behövs varje gång ni kör programmet.
  3. Vilken strategi ger minst antal gissningar?
  4. Finns det ett maximalt antal gissningar om man följer strategin?
  5. Kan du uttrycka max antal gissningar matematiskt?
  6. Hur kan du uttrycka maximala antalet gissningar som en funktion av intervallet talet ligger i?
  7. Gå igenom programkoden och se om du förstår alla delar. Skriv ner de frågor du har om koden.


Python-koden

# förklarar syftet med spelet
print("Detta spel handlar om att din kamrat ska gissa det tal som du matar in. Skriv in kamratens gissningar och läs upp vad programmet säger. ")

# Ange ett tal
number = input("Ange ett hemligt tal mellan 1 - 100. ")

# använd heltal
number = int(number)

# räknare
guess = 0
count = 0

# räknare
while guess != number:

# gissa talet
    guess = input ("Skriv in talet (mellan 1-100) din kamrat gissar på: ")
    if guess == "exit":
        break
# räkna gissningar
    guess = int(guess)
    count += 1
       
# jämför gissning med tal
    if guess < number:
        print("Talet du angav ar mindre än mitt hemliga tal.")
    elif guess > number:
        print("Talet du angav är större än mitt hemliga tal.")
    else:
        print("Grattis! Du har gissat talet som jag tänkt på  (matat in).")
        print("Talet är:",number,)        
        print("Och det har tagit dig",count,"gissningar.")
        
# visar resultatet så länge vi vill 
input("Tryck Enter för att avsluta programmet")


Uppgiften är inspirerad av Attila Szabo, Utbildningsförvaltningen Stockholm.

[redigera]
Swayen till detta avsnitt: Potenser


Läs om Potenser


Öva potenser

Öva på Khan:

Kahn-övningar på potenser och faktorisering:


GeoGebra

Två övningar från Visuell matematik:



Tiopotenser och prefix

Exit ticket

- -

Lektion 7 - Positionssystemet och olika talbaser

Tisdag

Vi tittar på snittet på veckodiagnosen och delar ut dem.

Decimala talsystemet (tiosystemet) är ett positionssystem som baseras på talet 10 och därmed använder 10 olika siffror (det normala antalet fingrar), 0–9. Sedan låter man siffrans position bestämma vilken 10-potens som siffran skall multipliceras med. På detta sätt blir talet

304 = 3·102 + 0·101 + 4·100. 

CC från Wikipedia

Ett exempel från boken:

Visa att 0,375 = 3/8

Binära talsystemet

Det binära talsystemet är en representation för tal som har talbasen två. Det betyder att enbart två olika siffror används, ett och noll. Binära tal används praktiskt taget av alla datorer eftersom de använder digital elektronik och boolesk algebra (eller binär algebra som det också kallas). I Europa var Juan_Caramuel_y_Lobkowitz Caramuel först med att beskriva det binära talsystemet som han då kallade Dyadik. Medan Gottfried Leibniz gjorde det känt för en bredare publik. Talsystemet upptäcktes dock långt tidigare av den forntida matematikern Pingala.

Det binära talsystemets talföljd består bara av två siffror, 0 och 1. Nästa tal är det, av de talen som kan skrivas med ettor och nollor, som kommer näst i sifferraden. Så talen blir: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10 000 o.s.v

De gamla egyptierna använde det binära talsystemet för att skriva bråktal i decimalform. De använde dock inte ettor och nollor, utan de använde sig av en symbol kallad 'Horus öga'. Olika delar av symbolen motsvarade olika positioner på höger sida om kommatecknet. Om just den delen ritades ut motsvarade det en etta på den positionen, om den utelämnades motsvarade det en nolla.

Precis som i det decimala talsystemet är den högra siffran minst signifikant. Med enbart den siffran kan talet 0 och 1 beskrivas. För att beskriva talet 2 måste en ny siffra skrivas till vänster om den första, det vill säga '10', varpå talet 3 följer representerat som '11'. Detta fortgår på samma maner ju högre upp man behöver komma.

Exempel på hur man kan skriva för att konvertera ett binärt tal till decimaltal:

Om det binära talet är 10101101 så är det decimala talet

 1·27 + 0·26 + 1·25 + 0·24 + 1·23 + 1·22 + 0·21 + 1·20 =

 128 + 0 + 32 + 0 + 8 + 4 + 0 + 1 = 173

Om ett binärkomma finns närvarande så representerar siffrorna till höger om det en mot höger ökande negativ tvåpotens. Exempel:

   11,0012 = 1·21 + 1·20 + 0·2-1 + 0·2-2 + 1·2-3 = 2 + 1 + 0 + 0,125 = 3,12510

Vid representation av tal med decimaler är det dock idag mycket vanligare att använda IEEE:s flyttalsrepresentation

Horners metod

En intressant egenskap i det binära talsystemet är att en multiplikation med två erhålles genom att helt enkelt skifta alla siffror en plats åt vänster och sätta dit en nolla. Denna egenskap ger följande intressanta variant av Horners metod: För att enkelt beräkna det decimala värdet av ett binärt tal i huvudet behöver du bara läsa talet från vänster och multiplicera varje delsumma med två; om den binära siffran är en etta så addera dessutom en etta till summan. Man börjar med summan 0. Med samma exempelsträng som ovan (10101101) blir det så här:

 0·2+1=1 , 1·2=2, 2·2+1=5, 5·2=10, 10·2+1=21, 21·2+1=43, 43·2=86, 86·2+1=173

CC från Wikipedia


Omvandla binärt till decimalt

Omvandla decimalt till binärt

Hexadecimala talsystemet

Lektion 8 - Tiopotenser och prefix

Tisdag

Definition: a*10n, a mellan ett o tio

Gör uppg 1813, 1820

Prefix: http://sv.wikipedia.org/wiki/SI-prefix

Prefix.

Räkneexempel

Det finns fina fakta att göra uppgifter ifrån på denna sida om CD-skivan.

Lektion 9 - Avrundning

Repetitionsrutan

Testet

Upptäck och visa 51

Aktivitet s 52

Avrundning.

Lektion 10 - Sammanfattning och repetition

Fredag: Veckodiagnos.