Kvadreringsregeln Ma2c: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
 
(73 mellanliggande sidversioner av 2 användare visas inte)
Rad 1: Rad 1:
{|
__NOTOC__
|-
=Teori=
| {{malruta | xxx
 
{{malruta | '''Kvadreringsregeln'''
 
Nu ska vi lära oss kvadreringsreglerna som förenklar algebran. Vi kommer att se hur de kan åskådliggöras i geometrisk form.
}}
 
{{#ev:youtube | KqZTCxFuGrA | 340 | right | Parentesmultiplikation. Av Stagg Matte}}
 
{{defruta|
 
Ett '''polynom''' är ett matematiskt uttryck bestående av positiva heltalspotenser av variabler och konstanter kombinerade genom enbart addition, subtraktion och multiplikation. Exempelvis är
 
:<math>x^2 - 4x + 5</math>
 
ett polynom i variabeln <math>x</math>
 
Däremot är exempelvis '''inte'''
 
: <math>x^{-1}</math> ett polynom.
 
Ett '''binom''' är ett polynom med två termer.
}}


Här undersöker vi xxx.
{{sats | '''Sats: Distributiva lagen'''
}} |
<br>
| {{sway | [https xxx]}}<br />
:<math> a(b+c) = ab + ac</math>
{{gleerups| [https xxx] }}<br />
}}
{{matteboken |[https xxx] }}<br />
|}


== Teori ==
{{defruta | '''Parentesmultiplikation'''
<br>
:<math> (a + b)(c+d) = ac + ad + bc + bd</math>
}}
{{clear}}


=== Första och andra kvadreringsreglerna ===
===Första och andra kvadreringsreglerna===


[[Fil:A plus b au carre.svg|miniatyr|(a+b)² = a² + 2ab + b²]]
[[Fil:A plus b au carre.svg|miniatyr|(a+b)² = a² + 2ab + b²]]


'''Kvadreringsreglerna''' är regler i [[algebra]]n om hur man utvecklar uttrycken
{{#ev:youtube | 1Ga-lXsVkmg | 340 | right |Potenslagarna, av Åke Dahllöf}}
{|  
 
| <math>\ (a+b)^2=a^2+2ab+b^2 </math>
'''Kvadreringsreglerna''' är regler i algebran om hur man utvecklar kvadrater av binom.
| (Första kvadreringsregeln)
 
De båda kvadreringsreglerna är bra att lära sig utantill och lära sig att känna igen, för detta har man mycket hjälp av till exempel när man ska faktorisera polynom, vilket vi kommer att titta närmare längre fram i denna kurs.
 
{{defruta | '''Kvadreringsreglerna'''
<br>
: Första kvadreringsregeln
 
: <math>\ (a+b)^2=a^2+2ab+b^2 </math>
<br>
: Andra kvadreringsregeln
 
: <math>\ (a-b)^2=a^2-2ab+b^2 </math>
}}
 
 
{{harruta | '''Andra kvadreringsregeln'''
<br>
: <math>(a-b)^2 =  </math>
: <math> (a-b)(a-b) = </math>
: <math> a^2-ab-ba+b^2 =  \qquad </math>      ( och ab {{=}} ba )
: <math> a^2 -2ab+b^2    \qquad  </math>        V.S.B.
}}
 
{{clear}}
 
= Exempel =
 
<pdf>Fil:Kvadreringsregelerna_lösningar.pdf</pdf>
 
<pdf>Fil:Lösning_nr_277415_i_KM.pdf</pdf>
 
= GeoGebra-förklaring =
 
<html>
<iframe scrolling="no" title="Kvadreringsregeln, visualisering" src="https://www.geogebra.org/material/iframe/id/gmwf4d7p/width/1297/height/682/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1297px" height="682px" style="border:0px;"> </iframe>
</html>
 
= Uppgifter =
 
{| class="wikitable"
|-
! Första kvadreringsregeln!! Andra kvadreringsregeln
|-
|-
| <math>\ (a-b)^2=a^2-2ab+b^2 </math>
|  
| (Andra kvadreringsregeln)
: <math>\ (a+b)^2=a^2+2ab+b^2 </math>
||
: <math>\ (a-b)^2=a^2-2ab+b^2 </math>
|}
|}


{{wp}}
{{clear}}
 
{| class="wikitable"
|-
|
1. Utveckla <math> (11 - 2)^2 </math>


'''Förklaring'''
2. Utveckla <math> (x + 3)^2 </math>
 
(a-b)<sup>2</sup>
3. Utveckla <math> (x + 9)^2 </math>
(a-b)(a-b) =
 
a<sup>2</sup>-ab-ba+b<sup>2</sup> =          ( och ab = ba )
4. Utveckla <math> (x - 6)^2 </math>
a<sup>2</sup>-2ab+b<sup>2</sup>               V.S.B.


'''Länkar:'''
5. Utveckla <math> (3x + 4)^2 </math>


* [http://matteboken.se/lektioner/matte-b/algebra-och-geometri/kvadreringsreglerna matteboken om kvadreringsreglerna]
||
* [http://sv.wikipedia.org/wiki/Kvadreringsregeln  Kvadreringsregeln på Wikipedia].
6. Utveckla <math> (x + 0.5)^2 </math>


Bondestam respektive Wille på Mattecentrum om kvadreringsregeln:
7. Utveckla <math> (3x - 4y)^2 </math>


<youtube>-r6q69yktQo</youtube><youtube>z752eJNWsXA</youtube>{{#ev:youtube | 1Ga-lXsVkmg | 340 | right |Potenslagarna, av Åke Dahllöfr}}
8. Utveckla <math> (x^2+ x)^2 </math>
<br>


=== WolframAlpha Widget ===
9. Utveckla <math> (3xy + 4y^2)^2 </math>


Här kan du testa att låta datorn göra parentesmultiplikation:
10. Utveckla <math> (\frac{x}{3}+ 3x)^2 </math>
||
... fler uppgifter i KM.


{{#widget:WolframAlpha|id=c3f53c80c93fa003e2f8f54c64e0e386}}
|}


== Aktivitet ==
=Aktivitet=
   
   
{{uppgruta| '''xxx''''
<html>
<iframe scrolling="no" title="" src="https://www.geogebra.org/material/iframe/id/Y3eFGbjG/width/980/height/550/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="980px" height="550px" style="border:0px;"> </iframe>
</html>
 
= GGB-laboration=
 
===Bygg en egen app===


{{uppgruta| '''Visa första kvadreringsregeln med GeoGebra''''
: Konstruera sträckorna a och b
: Konstruera sträckan a-b
: Konstruera kvadraterna a<sup>2</sup>, b<sup>2</sup> och (a+b)<sup>2</sup>
: . . .
}}
}}


<html>
<html>
<iframe scrolling="no" title="Första kvadreringsregeln" src="https://www.geogebra.org/material/iframe/id/PBgsJwWW/width/556/height/682/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="556px" height="682px" style="border:0px;"> </iframe>
</html>
</html>


== Lär mer ==
=== Här är en instruktion/inspiration ===
 
<html>
<iframe scrolling="no" title="laboration kvadreringsregeln" src="https://www.geogebra.org/material/iframe/id/ntgjbxz8/width/802/height/663/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="802px" height="663px" style="border:0px;"> </iframe>
</html>
 
Extra
 
===Använd planscherna som förklaring.===
 
Vi sätter upp en plansch och flyttar runt områdena för att förklara kvadreringsreglerna.
 
=Lär mer=
 
{| class="wikitable" align="right" ,
|-
|{{sway | [https://sway.com/EjD4o0SUYfrPOINN?ref{{=}}Link Kvadrering]}}<br>
|-
|{{wplink| [http://sv.wikipedia.org/wiki/Kvadreringsregeln Kvadreringsregeln på Wikipedia] }}<br>
|-
|{{matteboken |[https://www.matteboken.se/lektioner/matte-2/algebra/kvadreringsreglerna  kvadreringsreglerna] }}<br>
|}
{{#ev:youtube | JjyfF1qd5DQ | 310 |right |Första kvadreringsregeln}}
{{#ev:youtube | uoG300XgW6o | 310 |right |Andra kvadreringsregeln}}
 
*[[Parentesmultiplikation]]
 
{{clear}}
 
==Exit ticket==


== Exit ticket ==
<headertabs />

Nuvarande version från 31 mars 2020 kl. 08.53

[redigera]
Mål för undervisningen Kvadreringsregeln

Nu ska vi lära oss kvadreringsreglerna som förenklar algebran. Vi kommer att se hur de kan åskådliggöras i geometrisk form.


Parentesmultiplikation. Av Stagg Matte
Definition

Ett polynom är ett matematiskt uttryck bestående av positiva heltalspotenser av variabler och konstanter kombinerade genom enbart addition, subtraktion och multiplikation. Exempelvis är

[math]\displaystyle{ x^2 - 4x + 5 }[/math]

ett polynom i variabeln [math]\displaystyle{ x }[/math]

Däremot är exempelvis inte

[math]\displaystyle{ x^{-1} }[/math] ett polynom.

Ett binom är ett polynom med två termer.


Sats


Sats: Distributiva lagen


[math]\displaystyle{ a(b+c) = ab + ac }[/math]


Definition
Parentesmultiplikation


[math]\displaystyle{ (a + b)(c+d) = ac + ad + bc + bd }[/math]

Första och andra kvadreringsreglerna

(a+b)² = a² + 2ab + b²
Potenslagarna, av Åke Dahllöf

Kvadreringsreglerna är regler i algebran om hur man utvecklar kvadrater av binom.

De båda kvadreringsreglerna är bra att lära sig utantill och lära sig att känna igen, för detta har man mycket hjälp av till exempel när man ska faktorisera polynom, vilket vi kommer att titta närmare längre fram i denna kurs.

Definition
Kvadreringsreglerna


Första kvadreringsregeln
[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math]


Andra kvadreringsregeln
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math]


Härledning
Andra kvadreringsregeln


[math]\displaystyle{ (a-b)^2 = }[/math]
[math]\displaystyle{ (a-b)(a-b) = }[/math]
[math]\displaystyle{ a^2-ab-ba+b^2 = \qquad }[/math] ( och ab = ba )
[math]\displaystyle{ a^2 -2ab+b^2 \qquad }[/math] V.S.B.


[redigera]
Första kvadreringsregeln Andra kvadreringsregeln
[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math]
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math]

1. Utveckla [math]\displaystyle{ (11 - 2)^2 }[/math]

2. Utveckla [math]\displaystyle{ (x + 3)^2 }[/math]

3. Utveckla [math]\displaystyle{ (x + 9)^2 }[/math]

4. Utveckla [math]\displaystyle{ (x - 6)^2 }[/math]

5. Utveckla [math]\displaystyle{ (3x + 4)^2 }[/math]

6. Utveckla [math]\displaystyle{ (x + 0.5)^2 }[/math]

7. Utveckla [math]\displaystyle{ (3x - 4y)^2 }[/math]

8. Utveckla [math]\displaystyle{ (x^2+ x)^2 }[/math]

9. Utveckla [math]\displaystyle{ (3xy + 4y^2)^2 }[/math]

10. Utveckla [math]\displaystyle{ (\frac{x}{3}+ 3x)^2 }[/math]

... fler uppgifter i KM.

[redigera]

Bygg en egen app

Uppgift
Visa första kvadreringsregeln med GeoGebra'
Konstruera sträckorna a och b
Konstruera sträckan a-b
Konstruera kvadraterna a2, b2 och (a+b)2
. . .


Här är en instruktion/inspiration

Extra

Använd planscherna som förklaring.

Vi sätter upp en plansch och flyttar runt områdena för att förklara kvadreringsreglerna.

[redigera]
Swayen till detta avsnitt: Kvadrering




Första kvadreringsregeln
Andra kvadreringsregeln

Exit ticket