Kvadreringsregeln Ma2c

Från Wikiskola
Hoppa till navigering Hoppa till sök
[redigera]
Mål för undervisningen Kvadreringsregeln

Nu ska vi lära oss kvadreringsreglerna som förenklar algebran. Vi kommer att se hur de kan åskådliggöras i geometrisk form.


Parentesmultiplikation. Av Stagg Matte
Definition

Ett polynom är ett matematiskt uttryck bestående av positiva heltalspotenser av variabler och konstanter kombinerade genom enbart addition, subtraktion och multiplikation. Exempelvis är

[math]\displaystyle{ x^2 - 4x + 5 }[/math]

ett polynom i variabeln [math]\displaystyle{ x }[/math]

Däremot är exempelvis inte

[math]\displaystyle{ x^{-1} }[/math] ett polynom.

Ett binom är ett polynom med två termer.


Sats


Sats: Distributiva lagen


[math]\displaystyle{ a(b+c) = ab + ac }[/math]


Definition
Parentesmultiplikation


[math]\displaystyle{ (a + b)(c+d) = ac + ad + bc + bd }[/math]

Första och andra kvadreringsreglerna

(a+b)² = a² + 2ab + b²
Potenslagarna, av Åke Dahllöf

Kvadreringsreglerna är regler i algebran om hur man utvecklar kvadrater av binom.

De båda kvadreringsreglerna är bra att lära sig utantill och lära sig att känna igen, för detta har man mycket hjälp av till exempel när man ska faktorisera polynom, vilket vi kommer att titta närmare längre fram i denna kurs.

Definition
Kvadreringsreglerna


Första kvadreringsregeln
[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math]


Andra kvadreringsregeln
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math]


Härledning
Andra kvadreringsregeln


[math]\displaystyle{ (a-b)^2 = }[/math]
[math]\displaystyle{ (a-b)(a-b) = }[/math]
[math]\displaystyle{ a^2-ab-ba+b^2 = \qquad }[/math] ( och ab = ba )
[math]\displaystyle{ a^2 -2ab+b^2 \qquad }[/math] V.S.B.


[redigera]
Första kvadreringsregeln Andra kvadreringsregeln
[math]\displaystyle{ \ (a+b)^2=a^2+2ab+b^2 }[/math]
[math]\displaystyle{ \ (a-b)^2=a^2-2ab+b^2 }[/math]

1. Utveckla [math]\displaystyle{ (11 - 2)^2 }[/math]

2. Utveckla [math]\displaystyle{ (x + 3)^2 }[/math]

3. Utveckla [math]\displaystyle{ (x + 9)^2 }[/math]

4. Utveckla [math]\displaystyle{ (x - 6)^2 }[/math]

5. Utveckla [math]\displaystyle{ (3x + 4)^2 }[/math]

6. Utveckla [math]\displaystyle{ (x + 0.5)^2 }[/math]

7. Utveckla [math]\displaystyle{ (3x - 4y)^2 }[/math]

8. Utveckla [math]\displaystyle{ (x^2+ x)^2 }[/math]

9. Utveckla [math]\displaystyle{ (3xy + 4y^2)^2 }[/math]

10. Utveckla [math]\displaystyle{ (\frac{x}{3}+ 3x)^2 }[/math]

... fler uppgifter i KM.

[redigera]

Bygg en egen app

Uppgift
Visa första kvadreringsregeln med GeoGebra'
Konstruera sträckorna a och b
Konstruera sträckan a-b
Konstruera kvadraterna a2, b2 och (a+b)2
. . .


Här är en instruktion/inspiration

Extra

Använd planscherna som förklaring.

Vi sätter upp en plansch och flyttar runt områdena för att förklara kvadreringsreglerna.

[redigera]
Swayen till detta avsnitt: Kvadrering




Första kvadreringsregeln
Andra kvadreringsregeln

Exit ticket