Elektriska kretsar: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
(En mellanliggande sidversion av samma användare visas inte) | |||
Rad 295: | Rad 295: | ||
[[Batterier]] | [[Batterier]] | ||
{{clear}} | {{clear}} | ||
Rad 323: | Rad 315: | ||
:<math>C = \epsilon \ \frac{A}{d}</math>, | :<math>C = \epsilon \ \frac{A}{d}</math>, | ||
där ''d'' är avståndet mellan plattorna, ''A'' är en plattas area och ε det isolerande materialets permittivitet. | där ''d'' är avståndet mellan plattorna, ''A'' är en plattas area och ε det isolerande materialets permittivitet. | ||
{{clear}} | |||
=== Ultra Capacitors === | |||
{{#ev:youtube | EoWMF3VkI6U | 300 | right }} | |||
Till höger finns en kul film om riktigt stora kondensatorer. Anledningen till att man kan göra de fräcka experimenten är den låga inre resistansen hos dessa kondensatoer. Filemn ger bra förklaringar och du lär dig en del ellära på köpet. | |||
{{clear}} | {{clear}} | ||
Nuvarande version från 29 december 2017 kl. 10.33
Arduino Oscilloskop
http://www.code.google.com/p/xoscillo/wiki/arduino vore det coolt att testa.
Resistans
Detta avsnitt och efterföljande hör i Heureka till kapitel 8 - Elektriska kretsar.
Resistansen talar om hur bra en ledare är. Bra ledare har låg resistans.
Resistansen i en ledare beror på materialet. Här finns en bra tabell över någtra ledares resistans.
En lång ledare är sämre än en kort.
En tjock ledare är bättre än en tunn.
Resistans, R
- [math]\displaystyle{ R = \rho \frac{l}{A} }[/math]
där [math]\displaystyle{ \rho }[/math] är en materialkonstant, resistiviteten och [math]\displaystyle{ l }[/math] är ledarens längd och [math]\displaystyle{ A }[/math] dess tvärsnittsarea
Resistansen i en ledare är temperaturberoende
Resistansen ökar med ökande temperatur.
Grafen till höger visar hur strömmen ökar då spänningen ökas över en 20 W, 12 V glödlampa.
Mätresultaten finns i sin helhet här: Resistansen i en lampas glödtråd
Uppgift |
---|
bestäm hur varm lampan blev
Läs om temperaturkoefficienten och gör en uppskattning hur varm glödtråden blev i vårt försök. |
Laboration - Temperaturen i en tråd
Ohms lag
Efter att vi nu har definierat storheterna ström, spänning och resistans kan vi ställa upp en ekvation för relationen mellan de tre storheterna. Detta förhållande kallas för Ohms lag.
Spänningen är lika med strömmen multiplicerat med resistansen. Resistans gånger ström lika med spänning.
Då gäller även att spänning delat med ström är lika med resistans.
Och att spänning delat med resistans är lika med ström.
Man kan skriva Ohms lag som i figuren till vänster. U=R*I. U står för spänningen. R är resistansen och I är strömmen.
Ohms lag
- [math]\displaystyle{ U = R I }[/math]
Räkna
- Räkna bokens uppgifter 812-816
- Extra räkneuppgifter ellära U, R, I
Övning
Resistiansen i en glödtråd.
Glödlampa. variera spänning, mät ström. Rita graf.
Hämta info i länk i labben om multimetern.
Ledare, halvledare och isolatorer
Kisel, mm.
Effekt
Effekt
- [math]\displaystyle{ P = U I }[/math]
där U är spänningen och I är strömmen
Kombinerar man med Ohms lag så gäller även:
- [math]\displaystyle{ P = U I = R I I = R I^2 }[/math]
och
- [math]\displaystyle{ P = U I = U \frac{U}{R} = \frac{U^2}{R} }[/math]
Övningar
- Tag reda på vad enheten Amperetimmar innebär.
- vad är en kilowattimme.
- Gå in på den här sidan, http://sv.wikipedia.org/wiki/Wattimme, och lägg till information som förbättrar sidan.
Facit: (klicka expandera till höger)
Om värmen är avstängd väljer vi naturligtvis lågenergilampan som förbrukar mindre energi eftersom den drar mindre ström.
Om vi däremot har huset uppvärmt kanske valet blir en konventionell glödlampa som är billigare i inköp. Den lampan har lägre verkningsgrad vilket innebär att en stor del av energin blir värme istället för ljus. Denna värme bidrar till uppvärmningen och blir därmed nyttig i alla fall.
Spänningen i vägguttaget är 230 V
- Lågenergilampans ström: [math]\displaystyle{ I_l = \frac{P}{U} = \frac{14}{230} = 61 mA }[/math]
- Konventionella lampans ström: [math]\displaystyle{ I_k = \frac{P}{U} = \frac{60}{230} = 260 mA }[/math]
Hur farlig är elektriciteten?
Det är farligt att få elektriska strömmar genom kroppen. Strömstyrkor på knappt 1 milliampere brukar kunna förnimmas som kittlande, och strömmar över cirka 10 mA ger kramp i muskler som inte kan hävas förrän strömmen bryts. Spänningar som överstiger klenspänning anses vara farliga. Elektrisk ström kan dessutom ge brännskador.
Det finns flera viktiga faktorer för hur kroppen påverkas när en elektrisk ström passerar igenom den:
- Vilka kroppsdelar som blir utsatta
- Tiden man blir utsatt för strömmen.
- Storleken på strömstyrkan (vilket beror på spänningen och hur fuktig man är)
- Hur den elektriska strömmen passerar igenom kroppen.
- Vågform beroende om det är lik- eller växelström och i det senare fallet växelströmmens frekvens.
Farligast är om strömmen passerar bröstkorgen och hjärtat (till exempel genom att man med ena handen rör ett strömförande föremål och med den andra en jordad diskbänk). Kramper i hjärtat leder till hjärtflimmer eller hjärtstillestånd. Flimmer uppstår vid några tiotals milliampere, stillestånd vid något hundratal eller mer
Wikipedia skriver om Elektricitet
Hjärtstartare
Vid hjärtstillestånd används defibrillatorer för att ge en elektrisk impuls som ska sätta igång hjärtat. I denna wikipediaartikel anges spänningen till 1000 V, energin till 100-200 J och tiden till 5 ms. Gör antagandet att späänningen är lika hög under hela pulsen (den är egentligen sinusformad men det struntar vi i just nu).
Beräkna:
- Effekten
- Strömmen
- Resistansen i kroppen
Grundläggande kopplingar
Förhör
Vi börjar med ett kort förhör på formlerna från förra lektionen, ström, spänning, resistwans och Ohms lag.
Det är samma frågor som vi övade på förra lektionen.
Att rita kopplingsscheman
Vilka symboler kan du? Känner du igen:
- batteriet
- strömbrytaren
- glödlampan
- resistansen
- spolen
- Voltmetern
- Amperemetern
Kirchhoff
Läs sidan omKirchhoffs lag och titta gärna på exemplet.
Kirchhoffs lag säger att ströömmarna som går in i en förgrening är lika stora som strömmarna som går ut ur förgreningen.
Man kan analysera en krets genom att rita ut en strömslinga i varje del av kretsen.
Sedan räknar man med hjälp av Ohms lag ut spänningen över de olika resistanserna. Det gäller då att räkna med alla strömmar som går genom en resistans.
Seriekopplade resistanser
När resistanserna sitter efter varandra kallas det för seriekoppling.
Länkar:
R = R1 + R2 + R3 + ... + Rn
Parallellkopplade resistanser
Vid härledningen använder man Kirchhoffs lag. Tänk dig att du har många motstånd parallellt. Vi visar det genom att skriva 1, 2, 3, ... , n. Då menar vi att vi har n stycken motstånd. N kan vara stort men i det enklaste fallet är n = 2.
I = I1 + I2 + I3 + ... + In U/R = U/R1 + U/R2 + U/R3 + ... + U/Rn 1/R = 1/R1 + 1/R2 + 1/R3 + ... + 1/Rn
Uppgift |
---|
Beräkna ersättningsresistansen
|
Pröva kopplingar
Liten kopplingsövning
Seriekopplingar
- Titta på den gula kopplingsboxen. Läs instruktionerna. Hur många kombinationer av resistanser kan man ställa in?
- Vilket intervall kan man ställa resistansen i?
- Ställ in multiometern på rätt mätområde. Koppla sladdar mellan multimetern och kopplingsboxen. Ställ boxen på 1 Ω och läs av på multimetern. Anteckan ditt resultat.
- Ställ boxen på 20 Ω och läs av på multimetern. Anteckan ditt resultat.
- Ställ boxen på 1234 Ω och läs av på multimetern. Anteckan ditt resultat.
- Ställ boxen på 8372 Ω och läs av på multimetern. Anteckan ditt resultat.
- Rita en skiss på hur du tror resistansboxen är kopplad inuti.
Parallellkopplingar
- Slå ihop er grupp med en annan grupp så ni får två resistansboxar.
- Beräkna den totala resistansen för två parallellkopplade motstånd, det ena 150 Ω och det andra på 450 Ω.
- Mät på motsvarande krets. Vad får du?
Räkneupgifteer
- Exempel 8.8:
- a) Beräkna strömmen.
- b) Beräkna spänningen över var och en av resistorerna
- 817-823
Elektromotorisk spänning och polspänning, s 174-176
EMK och polspänning
Polspänningen hos ett batteri
U = Ems - Ri I Där U är polspänningen på batteriet (spänningen batteriet lämnar) Ri är inre resistansen Ems är elektromotoriska spänningen (batteriets märkspänning)
Ems är den största spänning batteriet kan lämna. Den spänning batteriet ger vid extremt låga strömmar. När strömmen ökar får vi ett ökande spänningsfall över den inre resistansen och spänningen över polerna minskar.
Socrative.com
SOC#: SOC-2927152
Det finns flera korrekta svar på frågorna men det går bara att välja ett av dem i Socrative....
Uppgift bilbatteri
Uppgift |
---|
Hur mycket sjunker spänningen?
Ett bilbatteri har EMS = 14 V. Inre resistansen är 30 mOhm. Vilken polspänning har man när startmotorn går och strömmen är 70 A? |
Batterier
För batterier anges ofta hur mycket energi de innehåller som måttet amperetimmar, Ah. Det talar om hur många timmar batteriet kan levererar en snittström mätt i Ampere (ock vid batteriets spänning). Effekten är ju spänning multiplicerat med ström. Multiplicerar vi detta med tiden så får vi ju arbetet som uträttas eller den energimängd som batteriet innehållet.
Uppgift: Googla rätt på ett batteris prestanda och räkna ut hur många laddningar batteriet innehåller.
Läs mer
Kondensatorn
Kapacitans är ett mått på förmågan att lagra elektrisk laddning hos komponenter med ett linjärt förhållande mellan den lagrade laddningsmängden och spänningen över komponenten. Kapacitans är definierad som förhållandet mellan laddningsmängden Q och spänningen över kretsen U:
- [math]\displaystyle{ C = \frac{Q}{U} }[/math]
Internationella måttenhetssystemet|SI-enheten för kapacitans är Farad; 1 farad = 1 Coulomb per Voltt.
Kapacitans kan vara en önskad eller oönskad egenskap hos en elektrisk krets. Oönskad kapacitans kallas ibland strökapacitans. För till exempel ledare av högfrekvenssignaler är det vanligtvis önskvärt med så låg kapacitans som möjligt. För att åstadkomma kapacitans används en särskild komponent, en kondensator.
Plattkondensator
Den vanligaste komponenten för lagring av elektrisk laddning är den två-bladiga kondensatorn med ett isolerande dielektriskt material mellan plattorna. Om man bortser från randeffekter, ges kapacitansen av
- [math]\displaystyle{ C = \epsilon \ \frac{A}{d} }[/math],
där d är avståndet mellan plattorna, A är en plattas area och ε det isolerande materialets permittivitet.
Ultra Capacitors
Till höger finns en kul film om riktigt stora kondensatorer. Anledningen till att man kan göra de fräcka experimenten är den låga inre resistansen hos dessa kondensatoer. Filemn ger bra förklaringar och du lär dig en del ellära på köpet.
Elektronik och miljö
Fre v 10
Passa på att berätta om facebook.com/wikiskola.
Miljö
Tanken här är att jobba med fysiken på ett annat sätt än det normal med genomgångar, formler och räknande. Om man tittar i exemensmålen och kursplanen ser man att vi ska lära oss mer än att bra räkna. Därför ska vi genomföra ett enlektionsersprojektarbete. Ramarna beskrivs nedan.
Miljöaspekten är viktig
Denna film handlar om återvinning av elektronik i USA. Den ger en introduktion.
Uppgiften
Idag ska vi jobba med miljöaspekten en stund. Det finns många frågeställningar och ni kanske kan komma på fler. Jobba i små grupper och presentera vad ni kommit fram till genom att använda egen text, fria bilder och inbäddade filmer.
Jobba effektivt
Inget spelande och facebookande förstås. Dela upp uppgifterna mellan er. En skriver, en letar hemsidor, en letar film osv.
Skriva på wikiskola
Ni får ska skaffa konton i era egna namn här på wikiskola. Sen skriver ni. Jag kan hjälpa till med det mesta men börja med att prova er fram. Det största problemet är redigeringskonflikter men det händer mest i början. Spara ofta!
Hämta bilder som är fria att använda (utan copyright). Helst från Wikimedia Commons
Läs mer om Wikimarkup och hur man editerar.
Frågor
Välj en frågeställning, klicka på länken, skriv något och spara. Så gör ni området till ert eget.
- Vad är elektronikskrrot och hur ska det återvinnas?
- Vad händer med elektronikskrot i återvinningen?
- Behöver man slänga allt eller finns det andra sätt att använda sakerna?
- Hur kan operativsystemet i en dator bidra till bättre miljö?
- Vilka värdefulla, hälsoskadliga eller miljöfarliga ämnen finns i elektroniken?
- Sker mycket av återvinningen i utvecklingsländerna och varför et i så fall?
- På vilka sätt kan elektronik (IT) bidra till en bättre miljö?
- smarta operativsystem
- Hur väljer man miljövänlig elektronik?
- Hur påverkar elektroniken oss människor?
Redovisning
Vi avslutar med att titta på alla bidragen.
Tid över ?
I så fall får du räkna lite blandade uppgifter.
Elektrisk mätteknik
Elektrisk mätteknik ingår inte i boken men skulle kunna utgöra ett komplement. Jag skulle vilja hitta hård- och mjukvara till billigt pris för att ta in signaler i datorn.
Scilab är ett open source-alternativ till LabView. Dessutom med beräknigs och visualiseringsfunktioner påminnande om Matematica.
Facit till uppgifterna - Heureka kapitel 8
Uppgift |
---|
Skriv lösningen snyggt
Så här kan du skriva formler med LaTeX:
|
- Heureka 8.1
- Heureka 8.2
- Heureka 8.3
- Heureka 8.4
- Heureka 8.5
- Heureka 8.6
- Heureka 8.7
- Heureka 8.8
- Heureka 8.9
- Heureka 8.10
- Heureka 8.11
- Heureka 8.12
- Heureka 8.13
- Heureka 8.14
- Heureka 8.15
- Heureka 8.16
- Heureka 8.17
- Heureka 8.18
- Heureka 8.19
- Heureka 8.20
- Heureka 8.21
- Heureka 8.22
- Heureka 8.23
- Heureka 8.24
- Heureka 8.25
- Heureka 8.26
- Heureka 8.27
- Heureka 8.28
- Heureka 8.29
- Heureka 8.30
- Heureka 8.31
- Heureka 8.32
- Heureka 8.33
- Heureka 8.34
- Heureka 8.35
Repetition
Enkla uppgifter
Kjell & Company
Man kan inte låta bli att gilla Kjell & Companys böcker om elektronikprylar:
- Om ström, spänning, resistans och effekt. Dessutom får man tips om hur man gör om man behöver ersätta en nätadapter. Fråga: Hitta den billigaste nätadaptern till din dator.
- kopplingar och mätning
- Uppladdningsbara batterier. Läs om hur du kan spara pengare och miljö.
- Starkström och spara ström
Pappersövningar
Ett urval övningsuppgifter med facit kommer att delas ut. Det heter Övningsuppgifter från Nexus inför prov i Ellära. Det finns på min hårddisk efter som de är (c).
Övningsprov
Elläraprov version 1 med lösningar
De viktigaste sidorna att läsa på - Ellära
Läsnavisning Heureka Fysik 1.
Om du vill läsa det viktigaste för att kunna räkna uppgifter på ett konventionellt prov:
Läs noga sidorna: 137-140, 142-146, 150, 156-160, 163-165, 168-169, 170, 176-180 (mitten), 182-186, 187-190. 192-194.
Prov som bedömts elevaktivt och formativt
2013
Här är det Elläraprov som eleverna gjorde 2013 och sedan tillverkade facit till. Som vanligt ett Google docs som alla hjälptes åt med att skriva facit till under en lektion.
2013 års prov - Facit som eleverna skapat.
TE12A
https://docs.google.com/document/d/1uEorItXOdGzjaFrgznaZmjhxMGMIlGdXhwbVrnzp8iU/edit?usp=sharing
Uppgift |
---|
Reflektera
A Vad har du lärt dig under avsnittet? B Vad behöver du förbättra? C Skriv en (någorlunda) utförlig motivering till vilken nivå du ligger på när det gäller förmågorna:
|
TE112B
Fortsättning
Om man läser på KTH kan man komma på denna 7.5-poängskurs.
- Läs intro om elektricitet
- Läs om strömkretslära osv
Ett annorlunda prov
Konventionella prov med uppgifter som ska räknas ut prövar mest av förmågorna 1-2. Detta annorlunda prov syftar till att pröva fler förmågor, främst 3-5.
Förmågorna
Undervisningen i ämnet fysik ska ge eleverna förutsättningar att utveckla följande:
- Kunskaper om fysikens begrepp, modeller, teorier och arbetsmetoder samt förståelse av hur dessa utvecklas.
- Förmåga att analysera och söka svar på ämnesrelaterade frågor samt att identifiera, formulera och lösa problem. Förmåga att reflektera över och värdera valda strategier, metoder och resultat.
- Förmåga att planera, genomföra, tolka och redovisa experiment och observationer samt förmåga att hantera material och utrustning.
- Kunskaper om fysikens betydelse för individ och samhälle.
- Förmåga att använda kunskaper i fysik för att kommunicera samt för att granska och använda information.