Introduktion till derivatan med problemlösning

Från Wikiskola
Hoppa till navigering Hoppa till sök
[redigera]
Mål för undervisningen Nyttan med derivatan

Du ska få lära dig derivator på ett effektivt sätt:

  1. Först en frågeställning (problem)
  2. Sedan ser vi hur derivatan hjälper oss lösa problemet
  3. Därefter lär vi oss derivera
  4. Slutligen kommer derivatans definition

Alltså inte begreppen först och tillämpningen sen utan frågeställningen som leder till behov av verktyg.


Extremvärdesproblem

Tänk dig att du har ett problem som kan beskrivas med en funktion. Det är en modell där en variabel ger olika värden för funktionen. Du är intresserad av att optimera så att du hittar det värde på variabeln som ger största eller minsta värdet för funktionen. Detta är ett så kallat extremvärdesproblem. Det kallas också min- maxproblem.

Det du gör är att derivera funktionen och sätta derivatan = 0.

Sedan löser du ekvationen och får det värde som ger störst eller minst värde för ursprungsfunktionen.

Exempel: Varför vinner kvadraten?

Ett klassiskt problem är detta.

Tänk dig att du har ett staket som är 100 m långt och du ska hägna in ett så stort område som möjligt. Du får välja mellan olika breda rektanglar och en kvadrat.

Kalla rektangelns ena sida x. Eftersom omkretsen är 100 m är den andra sidans längd = 50 - x.

Arean är: A(x) = x (50 - x) = 50 x - x2

A'(x) = 50 - 2x

Derivatan = 0 ger x = 25