De första av dessa ekonomiuppgifter är potensfunktioner men på slutet träffar du på exponentialekvationer.
Det kallas ocker om någon lånar ut pengar till oskäligt hög ränta.
Kreditinstitutet Ruffel och Båg lånar ut 16 000 kr i sex månader till en kund som måste betala till baks 22 000 kr när halvåret passerat. Vilken är månadsräntan?
I ett parallellt universum existerar Bajtcoin, en valuta som alla handlar med. Ingen vet hur Bajtcoins fungerar men ingen vågar säga det så alla fortsätter använda dem ändå. Folket i detta universum har observerat att ett liknande fenomen har skett i vårt universum. Vi är de första som kommer i kontakt med folket från det parallella universumet och de har väldigt specifika frågor som behöver besvaras utifrån väldigt specifik information: Information
Fråga
Mellan år 1900-1966 hade Sveriges BNP en exponentiell tillväxt med fördubblingstiden 21 år. Hur stor ökning blir det i procent per år?
Det finns en förklarande artikel i Ny Teknik
Facit: (klicka expandera till höger)
Svar: 3,36 %/år
När det gäller pH och decibel handlar det inte direkt om exponentialekvationer (logaritmekvationer?) men lösningsförfarandet är ekvivalent.
Decibel [dB] är ett logaritmiskt mått. Det används för att ange ett förhållande till ett referensvärde och definieras enligt
[math]\displaystyle{ \mbox{dB} = 10\cdot\log_{10}\left(\frac{\text{effekt}}{\text{referensvärde}}\right) }[/math]
Decibel används ofta för att beskriva ljudnivå, elektrisk signalstyrka och digitala signaler.
[math]\displaystyle{ L_\mathrm{dB} = 10 \log_{10} \bigg(\frac{P_1}{P_0}\bigg) \, }[/math]
Läs: Wikipedia om Decibel .
dB-skalan är logaritmisk på så sätt att en ökning med 10 dB (1 Bell) innebär en ökning av effekten med en faktor 10. 0 dB innebär att värdet motsvarar referensnivån, 10 dB innebär att effekten är 10 gånger högre än referensnivån, 20 dB innebär att effekten är 100 gånger högre än referensnivån och 30 dB innebär att effekten är 1000 gånger högre än referensnivån. Omvänt så betyder −10 dB att effekten är en tiondel av referensnivån och −20 dB att effekten är en hundradel av referensnivån.
Hur stor är effekten [math]\displaystyle{ P_1 }[/math] om ljudet uppgår till 70 dB?
Om [math]\displaystyle{ P_0 = 10^{-12} }[/math]
pH är ett logaritmiskt mått på surhet, det vill säga på aktiviteten av vätejoner (H+) i en lösning. Lösningar med låga pH-värden är sura, och de med höga kallas basiska. Lösningar som har pH 7 (vid 25 °C) kallas neutrala. Symbolen p i pH är en operatorbeteckning innebärande att man anger den negativa 10-logaritmen av vätejonaktiviteten; det vill säga
pH-skalan infördes av Søren Peder Lauritz Sørensen 1909.
En stark syra med hög koncentration har ett pH-värde nära 0; en stark bas med hög koncentration har pH-värde nära 14. pH-skalan är dock inte begränsad till 0-14 och det finns till exempel riktigt starka syror med negativa pH-värden (under 0). Utifrån definitionen av pH får man:
Texten i ovanstående avsnitt kommer från Wikipedia.se
Läs: Wikipedia om pH.
1. Vad är pH-värdet om [math]\displaystyle{ {[H^+]} }[/math] är 8.5 10-6?
2. Bestäm [math]\displaystyle{ [H^+] }[/math] för en lösning med pH = 3.0
Här räknar vi på radioaktivt sönderfall, kol-14-metoden och liknande uppgifter.
Halveringstid är den tid efter vilken hälften av en given mängd av ett radioaktivt grundämne har sönderfallit. För en enskild instabil partikel kan halveringstiden tolkas som den tid efter vilken sannolikheten är 50% för att partikeln skall ha sönderfallit. Begreppet halveringstid används ofta i samband med radioaktivt sönderfall men kan även beskriva andra former av sönderfall eller nedbrytning, speciellt sådana processer som avtar exponentiellt.
Orsaken till att man definierar begreppet halveringstid är att denna, för ett visst ämne eller partikel, blir konstant (oberoende av tiden och mängden av ett ämnet). Till exempel så återstår hälften av en given mängd av den radioaktiva isotopen kol-14 efter ungefär 5730 år (halveringstiden) oavsett hur stor mängd man startar med. Efter ytterligare en halveringstid återstår således en fjärdedel av den ursprungliga mängden och efter tre halveringstider en åttondel. Rent matematiskt kommer alltså en viss, ständigt minskande, mängd alltid att finnas kvar.
Mängden (antalet atomer eller partiklar), N(t) som återstår vid tiden t kan beräknas enligt formeln
där [math]\displaystyle{ T_{1/2} }[/math] betecknar halveringstiden.
C14-metoden (kol-14-metoden eller radiokolmetoden) är en radiometrisk dateringsmetod som utvecklades i slutet av 1940-talet av professor Willard Frank Libby. Libby fick Nobelpriset 1960 för denna upptäckt. Metoden ledde till en mindre revolution inom arkeologin. Den gör det möjligt att datera fornlämningar och fossil innehållande organiskt material, vanligen träkol och ben, på ett sätt som man inte kunde göra tidigare. Tekniken är enbart tillförlitlig för material som varit levande för mindre än omkring 60 000 år sedan[1].
Metoden bygger på att ett antal olika sorters kol finns i allt levande. Växter tar ständigt upp ett nytillskott av kol från luften i form av koldioxid, och det blir sedan del av vävnader hos djur som äter växter eller andra djur. Kolisotopen kol-14 (14C, utläses ”kol fjorton”) genomgår radioaktivt sönderfall med en halveringstid på 5730 år. Isotopen 12C är däremot stabil. Fördelningen mellan dessa två isotoper i levande materia är vanligen densamma som i atmosfären, men vid samma tidpunkt som en organism slutar ta upp kol (d.v.s. dör) börjar andelen 14C att sjunka. Genom att mäta mängdförhållandet mellan kolisotoperna i ett prov kan man beräkna när organismen i fråga dog.
Organiska föreningar är kemiska föreningar vilka innehåller kol. De i naturen vanligast förekommande kol-isotoperna är 12C och 13C. Dessa isotoper är stabila och sönderfaller inte inom mätningshorisonten. Men det finns även en liten andel |14C som genom betasönderfall övergår till kväve. 14C har en halveringstid på 5 730 år, vilket betyder att hälften av isotopen har ”försvunnit” efter cirka 6 000 år.
Man antar att den kosmiska strålningen har varit relativt oförändrad under historiens gång. Därmed nyproduceras 14C-atomer i jämn takt uppe i jordens atmosfär. Detta sker genom reaktionen
som är relativt vanlig eftersom jordens atmosfär består av 78 % kväve (N). 14C nyproduceras ständigt i jordens atmosfär genom den kosmiska strålningen, vilken består av neutroner. Den kosmiska strålningen träffar kväve-14-atomen på 9 000 till 10 000 meters höjd och därefter förenas den nyproducerade 14C-atomen med syre för att bilda atmosfärisk koldioxid (CO2). Den atmosfäriska koldioxiden sprider sig sedan ner till jorden på två sätt: den regnar ner eller tas upp av växternas fotosyntes. Det betyder att djur ständigt får i sig färskt 14C genom födan. Men när organismerna dör upphör detta intag och andelen 14C minskar med åren. Genom att mäta andelen kol-14 i det organiska materialet kan man bestämma hur länge det varit dött.
Det kol som finns i livet på jorden består av två stabila kärnor (isotoper) med masstalen 12 och 13 (kol 12 och kol 13). Men så finns där en liten mängd radioaktivt kol 14. Det har vi fått i oss från maten, och det kolet kommer ytterst från gröna växter, som i sin tur har tagit upp det från luftens kolsyra.
Högt uppe i atmosfären kommer det in atomkärnor från den kosmiska strålningen med mycket höga energier. De kolliderar med kärnor i luftens kväve och syre. I en del av dessa reaktioner bildas kol 14, som där uppe bildar koldioxid. Den blandas med den icke radioaktiva koldioxiden. Så småningom kommer den ner till jordytan och tas upp av gröna växter.
När vi hugger ner ett träd, dör trädet och slutar ta upp koldioxid. Kol 14 sönderfaller hela tiden, och antalet kol 14-kärnor blir mindre och mindre. Genom att ta reda på hur många kol 14-kärnor där finns, kan man räkna ut hur länge det är sedan trädet fälldes. Det finns två sätt att ta reda på kol 14-halten. Dels kan man mäta radioaktiviteten i kolet, dels kan man köra kolet genom en så kallad masspektrograf och räkna kärnorna.
Kol 14 har en halveringstid på 5730 år, alltså antalet kärnor halveras på denna tid. Det gör att metoden kan användas för datering upp till kanske 30000 år. Arkeologerna har stor glädje av denna metod.
Om förhållandet mellan aktiviteten per gram i ett t år gammalt prov till aktiviteten i ett nytt prov är x gäller att
[math]\displaystyle{ x = 2^{-t /T_{1/2}} }[/math]
Hur gammalt är provet om förhållandet x är 1/8?
Texten från NRCFs frågelåda i Fysik
Jordens befolkning växer hela tiden. Här kan vi kanske tillämpa en exponentiell modell, men vilken ?
År 2004 hade vi 6.4 miljarder människor på jorden och 2010 var det 6.8 miljarder. När överskrider befolkningen 10 miljarder om den tillväxten fortsätter ?
Låt oss sätta 2004 som år 0. På 2010-2004 = 6 år ökade befolkningen med faktorn 6.8/6.4 = 17/16 = 1.0625 eller 6.25%.
Vår modell kunde se ut så här :
Då löser vi ekvationen för när denna monotont växande funktions värde blir störrä än 10.
Vi tar logaritmen av båda sidorna.
Befolkningsmängden på jorden överskrider 10 miljoner under 2048 enligt denna modell.
Vi antar att befolkningsmätningarna inte anger befolkningsmängden vid sista dagen på året. ( för t = 2004 + 44.17 = 2048.17 betyder ca 2 månader efter mätpunkten ).
Det bör komma från en gammal NP-uppgift. Hur som helst så har vi ett lik som kl 8 på morgonen är 30.5oC och sex timmar senare 26.5oC. När mordet skedde var kroppen 37oC. Hur lång tid hade gått innan liket hittades?
I GeoGebran nedan lades punkterna för de två temperaturmätningarna in. Sedan skrevs den allmänna exponentialfunktionen in med glidare för C och a. Efter anpassning fanns skärningspunkten med linjen y = 37. Tiden avlästes.
En GeoGebra ger på detta sätt en grafisk illustration till problemet vilket ökar förståelsen. Därtill ger den ett facit och ett tillräckligt exakt svar till uppgiften.
Formelsamlingen ger oss den generella exponentialfunktionen
Vi sätter tiden [math]\displaystyle{ t=0 }[/math] vid kl 08.00 då temperaturen [math]\displaystyle{ T=30.5^oC }[/math] Det ger oss konstanten C:
Nu använder vi kroppstemperaturen kl 14.00, dvs 6 timmar senare.
Vilket ger a:
Nu behöver vi bara ta reda på hur mycket tid som förflutit från mordet fram till första temperaturmätningen.
Vilket omskrivet blir
Logaritmering ger
Egentligen ska man använda det exakta värdet för 0.97