En cirkel med centrum i origo och radien r kan skrivas på formen:
En punkt på cirkeln har ett avstånd från origo som beskrivs genom Pythagoras. I figuren till höger är radien roten ur 4, dvs 2.
Wikipedia skriver om Pythagoras sats
I ett koordinatsystem kan en cirkel med mittpunkt i (a, b) och radien r, beskrivas som mängden av punkter som uppfyller ekvationen
Ekvationen kan ställas upp genom utnyttjande av Pythagoras sats för avståndet mellan punkterna [math]\displaystyle{ (a,b) }[/math] och [math]\displaystyle{ (x,y) }[/math].
Se det som att man flyttar cirkelns mittpunkt från origo till punkten [math]\displaystyle{ (a,b) }[/math] genom att sätta in a och b i uttrycket ovan.
Cirkelns ekvation är:
Den här cirkeln har sin mittpunkt i x = -2 och y = 3. Det är de värdena som ger noll inom respektive parentes.
Pröva att sätta in x = 0 respektive y = 0 ger punkterna där cirkeln skär axlarna.
Var skär cirkeln x-axeln?
Se pdf med uppgifter i Canvas.