En kurvas lutning

Från Wikiskola
Version från den 12 januari 2016 kl. 14.53 av Hakan (diskussion | bidrag) (Skapade sidan med '{{lm3c | En kurvas lutning |114 - 119}} {{#ev:youtube | gkjvgLXyCVg | 340 | right | En kurvas lutning. Frökenfysik, YT-licens}} {{defruta | '''En kurvas lutning i en viss p...')
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök
Ma3C: En kurvas lutning , sidan 114 - 119


En kurvas lutning. Frökenfysik, YT-licens
Definition
En kurvas lutning i en viss punkt

tangentens lutning är kurvans lutning i denna punkt.

Sekant (eg sekantlinje) är en linje som skär en kurva i minst två punkter


Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna . Linjen genom de två punkterna har lutningen:

[math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.