Kvadratiska modeller

Från Wikiskola
Version från den 23 mars 2015 kl. 21.18 av Hakan (diskussion | bidrag) (Skapade sidan med 'thumb|Square root Så här ser andragradsfunktionen ut på allmän form: y(x) = ax<sup>2</sup> + bx + c c anger var grafen skär y-axeln. a gör bl...')
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök
Square root

Så här ser andragradsfunktionen ut på allmän form:

y(x) = ax2 + bx + c

c anger var grafen skär y-axeln. a gör bland annat parabeln smalare eller bredare. bx-termen ger en diagonal förflyttning av hela kurvan (något förenklat uttryckt).

Exempel 1

ParabolicWaterTrajectory

Exempel 1 handlar om att man har en måttsatt bild och ska anpassa den allmänna funktionen y(x) = ax2 + bx + c till dessa mått.

Här är det smart att placera origo symmetriskt i bilden och att kika på ställena där grafen skär x-axeln och där den skär y-axeln.

Övning 1 - Skapa parabelns funktion utifrån en bild med mått

Anpassa den allmänna funktionen till vattenstrålen i bilden. Strålen når 2 m långt och är 1.5 m hög.

Övning 2 - Skapa parabelns funktion utifrån vertex och nollställen

Detta är en viktig uppgift. Se även Exempel 1 på sid 161 i Matematik 2C.

Andragradsfunktionen kan skrivas y = ax2+bx+c på allmänn form:

Grafen går genom punkterna (-16, 0) och har vertex i (0,-14).

  1. Vilket är det andra nollstället?
  2. Rita grafen.
  3. Bestäm b.
  4. Bestäm c.
  5. Bestäm a.
  6. Skriv ett uttryck för funktionen.

Exempel 2

Exempel 2 (s 162) i boken handlar om att titta på nollställena för en funktion för att hitta vertex mitt emellan nollställena och sätta in x-värdet och räkna ut y-värdet (högsta punkten i detta fall).

Parabelns egenskaper i GeoGebra 2

I Malins övning skriv kurvan på annan form (x-k)2, osv. Nyttigt men vi hinner inte göra den på lektionstid. Gör den gärna hemma!

Digitala rutan samt detta avsnitt sid 160-164 ersätts av en Övning i Geogebra på Vertex och faktorform av Malin C.

Överkurs: Andra kägelsnitt Av Malin C. Pröva själv att konsttruera med hjälp av mittpunktsnormaler.

Överbliven provupgift (svår)

Parabolic trajectory

Bilden visar en kastparabel.

Tänk dig att kastbanans högsta punkt är 35 m.

Längden på kastet är 110 m.

Utgå från formen för andragradsfunktionen [math]\displaystyle{ y(x) = a\cdot x^2 + b \cdot x + c }[/math]

Gör en matematisk modell av kastbanan.

Tips: Parabelns bana

Du kan printa denna! Uppgift kastparabel