Derivatan av en produkt
Bevis av produktregeln
[math]\displaystyle{ y' = \lim_{h\rightarrow0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h} = \\ \\ = \lim_{h\rightarrow0}\frac{f(x+h)g(x+h)-f(x)g(x)-f(x)g(x+h)+f(x)g(x+h)}{h}= \\ \\ = \lim_{h\rightarrow0}\frac{(f(x+h)-f(x))\cdot g(x+h)+(g(x+h)-g(x))\cdot f(x)}{h} = \\ \\ = \lim_{h\rightarrow0}(\underbrace {\frac{f(x+h)-f(x)}{h}}_{\rightarrow f'(x)}\cdot \underbrace{g(x+h)}_{\rightarrow g(x)}+\underbrace{\frac{g(x+h)-g(x)}{h}}_{\rightarrow g'(x)}\cdot f(x)) = \\ \\ = f'(x)\cdot g(x)+g'(x)\cdot f(x) }[/math]
Frågor