Matematiska regler

Från Wikiskola
Version från den 6 mars 2020 kl. 08.36 av Hakan (diskussion | bidrag) (Skapade sidan med ' {{defruta | '''Samma regler inom aritmetiken som i algebran'''<br /> : '''Kommutativa lagen.''' Operatorn <math>\star</math> på en mängd <math>S</math> är '''kommutativ''...')
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till navigering Hoppa till sök
Definition
Samma regler inom aritmetiken som i algebran
Kommutativa lagen.

Operatorn [math]\displaystyle{ \star }[/math] på en mängd [math]\displaystyle{ S }[/math] är kommutativ om och endast om det för alla element [math]\displaystyle{ x }[/math] och : [math]\displaystyle{ y }[/math] i [math]\displaystyle{ S }[/math] gäller att

[math]\displaystyle{ x \star y = y \star x }[/math].
Associativa lagen.

En binär operator * på en mängd S kallas associativ om det för alla x, y och z i S gäller att

(x * y) * z = x * (y * z).

Om så är fallet kan man använda beteckningen x * y * z, eftersom det inte spelar någon roll i vilken ordning operationerna utförs.

Distributiva lagen.

En operator, [math]\displaystyle{ \,* }[/math], sägs vara distributiv med avseende på en annan operator, +, om det för alla x, y och z i en mängd S gäller att

[math]\displaystyle{ \, x * (y + z) = (x * y) + (x * z) }[/math]
och
[math]\displaystyle{ \, (y + z) * x = (y * x) + (z * x) }[/math]
Prioriteringsreglerna
Utför beräkningar inom parenteser först, därefter multiplikationer och divvisioner och sist additioner och subtraktioner.


Definition
Negativa tal
  • minustecken kan betyda subtraktion eller negativa tal
  • a+(-a) = 0 definition
  • a+(-b) = a-b addition
  • a-(-b) = a+b subtraktion
  • a*(-b) = -ab multiplikation
  • (-a)*(-b) = ab multiplikation
  • (-a)/b = -(a/b) division
  • (-a)/(-b) = a/b division


Definition

Multiplikation av bråk

a/b * c/d = ac / bd


Division av bråk

a/b / c/d = a/b * d/c =ad / bc




Definition
Potenslagarna

Ur definitionen av potenser med positiva tal som heltalsexponent, kan potenslagarna härledas:

  • [math]\displaystyle{ {(x \cdot y)}^n = x^n \cdot y^n }[/math]
  • [math]\displaystyle{ { \left( {x \over y }\right)^m} = {x^m \over y^m} }[/math]
  • [math]\displaystyle{ x^m \cdot x^n = x^{m+n} }[/math]
  • [math]\displaystyle{ {x^m \over x^n} = x^{m-n}, (x \ne 0) }[/math]
  • [math]\displaystyle{ {(x^m)}^n = x^{m \cdot n} }[/math]

Utgående från dessa lagar definieras sedan utvidgade betydelser av potens.