Begreppen sekant och tangent

Från Wikiskola
Version från den 16 september 2018 kl. 19.55 av Hakan (diskussion | bidrag)
Hoppa till navigering Hoppa till sök
[redigera]

En kurvas lutning

Definition
En kurvas lutning i en viss punkt

tangentens lutning är kurvans lutning i denna punkt.

Tangentens lutningen i punkten där [math]\displaystyle{ x = a }[/math] skrivs:

[math]\displaystyle{ k = \lim_{x \to a} \frac{f(x) - f(a)}{x-a} }[/math]

Detta är derivatan i punkten [math]\displaystyle{ (a, f(a)) }[/math]



Viktigt
Begrepp

Lim är förkortning av limes som betyder gräns på latin.

Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna. Linjen genom de två punkterna har lutningen:

[math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.

Tangentens lutningen i punkten där [math]\displaystyle{ x = 3 }[/math] skrivs:

[math]\displaystyle{ k = \lim_{x \to 3} \frac{f(x) - f(3)}{x-3} }[/math]
[redigera]

Laborera med sekanten och derivatan

[redigera]

GeoGebran visar sekanten och tangenten

Dra i glidaren för och se vad som händer med senaten när h går mot noll.

Läs hela GGB-övningen här.

[redigera]

Film

Beräkning av gränsvärden. Frökenfysik, YT-licens
En kurvas lutning. Frökenfysik, YT-licens
Sid 114-119 del 1 - lutning av en kurva samt derivatans definition. Av Åke Dahllöf.
Sid 114-119 del 2 - lutning av en kurva samt derivatans definition. Av Åke Dahllöf.

Läs på mer

Repetition: Repetera gärna Räta linjen från Ma2c.