Index, lån, amortering

Från Wikiskola
Hoppa till navigering Hoppa till sök

Index, 189-191

Mål för undervisningen Index, lån och amortering

Du lär dig hur man skapar och läser av en indextabell.

Du lär dig hur man beräknar kostnaden för lån över flera år eller vad ett ackumulerat sparande kan ge.

Swayen till detta avsnitt: [Index]


läromedel: Index och lån


Läs om Index


Teori

Konsumentprisindex

Definition
Index

Ett index är förändringsfaktorn multiplicerat med 100 %. Vid indexuppräkning behöver man en starttidpunkt, exempelvis ett år då indexx börjar vid 100 %.


Konsumentprisindex

Lån och räntor

Vad händer om ränta läggs på ränta? Det kan vara dina pengar på ett sparkonto eller i ett värre fall någon som lånat pengar utan kunna betala tillbaka. Det händer till exempel när människor tar så kallade SMS-lån. I båda fallen kommer det utlånade beloppet att öka exponentiellt.

Om lånebeloppet till exempel är [math]\displaystyle{ 15 000 \: kr }[/math] och räntan är [math]\displaystyle{ 12 }[/math]% per år kan vi skriva hur lånet ökar med hjälp av förändringsfaktorn:

Efter ett år är det nya beloppet [math]\displaystyle{ 15 000 \cdot 1.12 = 16 800. }[/math]
Beloppet har alltså ökat (om man inte betalat räntan) så efter två år är det nya beloppet [math]\displaystyle{ 16 800 \cdot 1.12 = 18 816. }[/math]
Men detta kan ju skrivas som [math]\displaystyle{ 15 000 \cdot 1.12 \cdot 1.12 = 18 816 }[/math]
eller [math]\displaystyle{ 15000 \cdot 1.12^2 = 18 816 }[/math]
Beloppet ökar alltså mer och mer och efter [math]\displaystyle{ x }[/math] år är beloppet uppe i [math]\displaystyle{ 15 000 \cdot 1.12^x }[/math]
Definition
Exponentialfunktioner

Exponentialfunktionerär en klass av funktioner som kännetecknas av att funktionsvärdets ändringstakt är proportionell mot funktionsvärdet. Exempelvis kan ränta på ränta beräknas som

[math]\displaystyle{ slutbeloppet = r^x \cdot startbeloppet }[/math]

där [math]\displaystyle{ r^x }[/math] är en exponentialfunktion, den årliga räntefaktorn är r (till exempel 1,12 för 12 % ränta) och x antalet år.

Exponentialfunktionerna kan skrivas på formen:

[math]\displaystyle{ f(x) = C \cdot a^x }[/math]


Aktivitet

Undersök exponentialfunktionen genom att titta på grafen

Skriv in [math]\displaystyle{ f(x) = 15 000 \cdot 1.12^x }[/math] i GeoGebra. Vad kan du säga om grafen?

Använd Excel

Nu ska vi backa tillbaka och undersöka år för år vad som händer när exempelvis ett lån ökar år för år genom att räntan läggs på lånet.

Det går bra med vilket kalkylprogram som helst.

Uppgift
Undersök ränta på ränta med Excel

Välj ett belopp (ex 8000 kr) som du ska sätta in på ett sparkonto och tänk dig att du får 7 % i ränta. Det är kanske inte rimligt i dagsläget men det kunde ju bara en årlig prognos för avkastningen på en aktiefond.

  1. I cell B1 skriver du 8000, i B2 7 och i B3 beräknar du förändringsfaktorn genom att skriva = (klicka på B2) /100 + 1.
  2. I cell B4 multiplicerar du sparbeloppet med förändringsfaktorn
  3. På rad A skriver du rubriker till dina kolumner
  4. På C-raden ska du klura ut hur mycket sparbeloppet ökat efter år två
  5. Upprepa för år tre och fyra.
  6. Högerklicka på ettan i rad ett och lägg till en rad där du kan skriva rubriker på kolumnerna.
  7. Markera kolumn C och kopiera ut på fler kolumner. Hur mycket pengar har du efter 30 år?
  8. Ändra belopp och ränta i kolumn B och se hur det påverkar resultatet.


Utforska en modell

Det här är en omfattande GeoGebra med en modell av lån med amortering. Undersök hur den fungerar. Vilken formel ligger i grunden av konstruktionen?

Fler beräkningsverktyg

Testa även GeoGebras kalkylark och kombinationen med grafer.

Testa vad Wolfram kan göra.

Om du behöver repetera

Ränta

Mikael Bondestam om lån, ränta och amortering.

Lär mer

Wikipedia skriver om Sammansatt_ränta

Exit card