Nu lär vi oss att använda komplxa tal för att lösa andragradsekvationer med ickereella rötter.
De komplexa talen kan ses som en utvidgning av de reella talen. Ett komplext tal kan skrivas som
där det reella talet a är realdelen, det reella talet b är imaginärdelen och i är den imaginära enheten med egenskapen
Andragradsekvationer med ickereella röter uppstår när vi behöver ta roten ur ett negativt tal. Då använder vi komplexa tal. Repetera gärna genom att titta på sidan Tal och talmängder
Ett komplext tal består av en realdel [math]\displaystyle{ a }[/math] och en imaginärdel [math]\displaystyle{ b }[/math].
Utifrån den generella beskrivning av andragradsekvationen:
med lösningen:
Ser vi att vi får komplexa rötter om diskriminanten
x2 = -16 har ingen reell rot men däremot två komplexa.
x2-4x+13=0 har också två komplexa rötter fast här består varje rot av både en realdel och en imaginärdel.
Läs mer: Komplexa tal på wikipedia
Lär dig lösa andragradsekvationer med CAS-modulen i GeoGebra.
CAS står för Computer Algebra System.
GeoGebra Quickstart Tutorial.
Ett komplext tals konjugat kan bildas genom att spegla dess imaginärdel i x-axeln:
Konjugatet till ett komplext tal z = a + b i definieras som
För konjugatet gäller
Absolutbeloppet av ett komplext tal z = a + b i kan i det komplexa talplanet tolkas som avståndet från origo till punkten (a, b) och beräknas som
eller
För absolutbeloppet gäller