Begreppen sekant och tangent

Från Wikiskola
Hoppa till navigering Hoppa till sök
[redigera]

Ändringskvot

Frökenfysik, YT-licens
Definition
Ändringskvoten

Ändringskvot är en förändring per tidsenhet eller annan enhet. Kan även kallas differenskvot.

Både ändringskvoten och sekantens lutning kan skrivas [math]\displaystyle{ \frac {\Delta y}{\Delta x} }[/math]


En kurvas lutning - grafiskt

Uppgift
Vi undersöker gemensamt i GeoGebra

Rita en funktion av tredje graden i GeoGebra.

Använd verktyget för att lägga in en tangent i punkten (a, f(a)) där a är en lämplig glidare.

Hur kan man beskriva tangentens relation till grafen?

Vad finns det för samband mellan tangentens lutning och derivatan av funktionen?


Sekanten

En linje som skär en kurva i två punkter kallas sekant.

Definition
Sekantlinje

En sekantlinje av en kurva är en rät linje som skär två eller fler punkter på kurvan. En sekantlinje kallas oftast för en sekant, men det ordet används också ibland för enbart sträckan mellan de två punkterna på sekantlinjen. Själva ordet sekant kommer från latinets "secare" som betyder "att skära" eller "att klippa"


Om punkterna ligger nära varandra kommer sekanten att ha ungefär samma lutning som en tangent mellan punkterna. Sekantlinjen kan användas för att approximera tangenten för en kurva i en punkt P. Om sekanten för kurvan definieras genom de två punkterna P och Q, med P fixerad och Q varierbar, så kommer sekanten att närma sig tangenten när Q närmar sig P (antag att punkten bara har en tangent).

Som en konsekvens av detta kan man säga att sekantens lutning, eller riktning, går mot tangenten.

Sekanten i koordinatsystemet

Sekantapproximation

Betrakta kurvan som definieras av y = f(x) i det kartesiska koordinatsystemet och betrakta punkten P med koordinater (c, f(c)) och en annan punkt Q med koordinater (c + Δx, f(c + Δx)). Lutningen k av sekantlinjen, uttryckta i P och Q, ges av

[math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{f(c + \Delta x) - f(c)}{(c + \Delta x) - c} = \frac{f(c + \Delta x) - f(c)}{\Delta x} }[/math]

Högerledet av ovanstående ekvation är en variant av Newtons deriveringskvot. När Δx närmar sig noll kommer uttrycket närma sig derivatan av f(c) under antagandet att derivatan existerar.

Wikipedia skriver om sekant

En kurvas lutning - algebraiskt

Definition
En kurvas lutning i en viss punkt

tangentens lutning är kurvans lutning i denna punkt.

Tangentens lutningen i punkten där [math]\displaystyle{ x = a }[/math] skrivs:

[math]\displaystyle{ k = \lim_{x \to a} \frac{f(x) - f(a)}{x-a} }[/math]

Detta är derivatan i punkten [math]\displaystyle{ (a, f(a)) }[/math]



Viktigt
Begrepp

Lim är förkortning av limes som betyder gräns på latin.

Tänk dig en fix punkt på en kurva och en rörlig punkt med koordinaterna. Linjen genom de två punkterna har lutningen:

[math]\displaystyle{ k = \frac{\Delta y}{\Delta x} = \frac{f(x) - f(3)}{x-3} }[/math]

Låt sedan [math]\displaystyle{ x }[/math] minska så att [math]\displaystyle{ x }[/math] närmar sig 3. Då kommer linjen att tangera kurvan i punkten [math]\displaystyle{ (x,f(x)) }[/math]. Den linjen kallas för tangent.

Tangentens lutningen i punkten där [math]\displaystyle{ x = 3 }[/math] skrivs:

[math]\displaystyle{ k = \lim_{x \to 3} \frac{f(x) - f(3)}{x-3} }[/math]
[redigera]

GeoGebran visar sekanten och tangenten

Dra i glidaren för och se vad som händer med senaten när h går mot noll.

Läs hela GGB-övningen här.

[redigera]

Film

Läs på mer

Repetition: Repetera gärna Räta linjen från Ma2c.