Centralt Innehåll:
En bisektris till en vinkel [math]\displaystyle{ \angle ABC }[/math] är en stråle från B genom en punkt D sådan att [math]\displaystyle{ \angle ABD=\angle DBC }[/math]. En bisektris delar en vinkel i två lika delar (bisektris betyder "dela i två delar"). En vinkel har endast en bisektris. Varje punkt på en vinkels bisektris har samma avstånd till vinkelns sidor. Om en stråle delar en vinkel mindre än [math]\displaystyle{ 180^{\circ} }[/math] säger man att strålen är en inre bisektris. Den yttre bisektrisen är strålen som delar en vinkels supplementvinkel i två lika delar.
För att konstruera en vinkels bisektris med passare och rätskiva dras en cirkel vars centrum är vertex. Cirkeln korsar vinkelns sidor i två punkter. Med dessa två punkter som centrum, rita två cirklar med samma storlek som den första. Skärningspunkterna för cirklarna bestämmer en stråle som är vinkelns bisektris. Värt att notera är att en vinkel inte kan delas i tre lika stora delar med endast passare och rätskiva (detta bevisades först av Pierre Wantzel).
Wikipedia skriver om Bisektris
Korda är den räta linje som sammanbinder två punkter på en cirkelbåge eller annan kroklinje. Det är antingen själva den geometriska mängden eller längden av denna. Historiskt användes också korda som en trigonometrisk funktion, nämligen längden av den korda som i en cirkel med fix radie motsvarar en medelpunktsvinkel. Uttryckt i moderna termer är denna korda av vinkeln v detsamma som 2r sin (v/2), där r är cirkelns radie.
Wikipedia skriver om Korda
När du repeterar tänker du kanske: - Vad ska jag ha denna algebra och geometri till?
Se filmen så får du svaret;:
Konstruera en cirkel med en korda. Det ska vara en sträcka som slutar i en punkt på cirkeln.
Rita en triangel och dra de tre bisektriserna. Markera skärningspunkten.
Lär mer om trianglar på denna sida: Wikipedia skriver om Triangel och konstruera medianer, omskrivna cirklar och andra spännande samband som du hittar på sidan.
Trianglar_i_Python
Diagnos 1 geometri Ma2C är en Geogebra som innehåller likformighet, transversalsatsen, randvinkelsatsen, kordasatsen och bisektrissatsen på ett och samma ställe. Jag använder den för att skapa enkla diagnoser. Det är bara att ändra litet i figurerna så blir et nya versioner av diagnosen.
olleh: http://olleh.se/start/frageprogramMa2.php
MalinC: http://www.malinc.se/math/geometry/circles_angles_proofssv.php
Länkar