Rotekvationer Ma2c

Från Wikiskola
Hoppa till navigering Hoppa till sök
Mål för undervisningen xxx

Här undersöker vi xxx.

Swayen till detta avsnitt: [https xxx]


läromedel: [https xxx]


Läs om [https xxx]


Teori

Definition
[math]\displaystyle{ }[/math] är en xxx


Rotekvationen

Mall:Satsruta

Varje algebraisk ekvation med komplexa koefficienter av graden [math]\displaystyle{ n }[/math], där [math]\displaystyle{ n }[/math] är större än 1, har precis [math]\displaystyle{ n }[/math] komplexa nollställen, räknade med multiplicitet (några rötter kan vara lika). Detta kan tyckas vara ett strängare påstående, men det kan lätt visas vara ekvivalent med satsformuleringen genom användning av faktorsatsen.

Koefficienterna anges som komplexa tal vilken innefattar de reella talen, då dessa är isomorfa med de komplexa tal för vilka imaginärdelen är noll.

Exempel 1

En andragradsekvation

[math]\displaystyle{ ax^2 + bx + c = 0, a\neq 0 }[/math]

har alltid två rötter. Dessa är

[math]\displaystyle{ x = {-b \pm \sqrt{b^2-4ac} \over 2a} }[/math]

Om uttrycket under rottecknet är

  • större än noll, är rötterna olika och reella
  • mindre än noll, är rötterna olika och icke-reella
  • lika med noll, är rötterna lika och reella

exempel 2

Rotekvationer innehåller x-termer och roten ur x-termer. Man löser dem genom att kvadrera båda leden.

[math]\displaystyle{ \sqrt{x+2} = x }[/math]

Kvadrera båda sidorna:

[math]\displaystyle{ x+2 = x^2 }[/math]
[math]\displaystyle{ x^2 - x - 2 = 0 }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 2} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{1}{4} + \frac{8}{4}} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \sqrt{\frac{9}{4}} }[/math]
[math]\displaystyle{ x = \frac{1}{2} \pm \frac{3}{2} }[/math]
[math]\displaystyle{ x_1 = - 1, x_2 = 2 }[/math]

Viktigt att kolla om man har falska rötter.

[math]\displaystyle{ -1 }[/math] är en falsk rot eftersom den inte gör att vänster led och höger led blir lika i ursprungsekvationen.

Svaret är alltså [math]\displaystyle{ x = 2 }[/math]

Aktivitet

Uppgift
xxx'



Lär mer

Exit ticket