Normalfördelning
|
Teori
Definition
Definition |
---|
Normalfördelningen
Normalfördelningen har täthetsfunktionen
där μ och σ är normalfördelningens karakteristiska konstanter: μ är väntevärdet och σ är standardavvikelsen för fördelningen. Denna normalfördelning betecknas med [math]\displaystyle{ N(\mu,\sigma)\, }[/math]. |
Normalfördelningens täthetsfunktion kan inte integreras med vanliga endimensionella metoder eftersom den inte har någon primitiv funktion som kan uttryckas analytiskt. Arean under kurvan kan emellertid med andra metoder visas vara 1, vilket den måste vara för att vara en sannolikhetsfördelning.
En standardiserad normalfördelning har μ = 0 och σ = 1.
Filmer
Exempel 1 i boken
Hemuppgift - Normalfördelning
Lös uppgiften till höger.
Är det en normalfördelning och hur vet du det?
Använd datorn till att redovisa ditt svar.
Var beredd att presentera din lösning med projektor.
GeoGebra-förslag till lösning - NP Ma D Normalfödelning
Bedömningsanvisning från NP
Redovisad godtagbar förklaring, t ex integralens värde anger den totala ökningen av antalet bin under 24 veckor
Aktivitet
Uppgift |
---|
xxx'
|