Formler för dubbla vinkeln: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 42: | Rad 42: | ||
:<math> | :<math> | ||
\sin \frac{\theta}{2} = | \sin \frac{\theta}{2} = \left(2 \pi - \theta + 4 \pi \left\lfloor \frac{\theta}{4\pi} \right\rfloor \right) \sqrt{\frac{1 - \cos \theta}{2}} \\[3pt] | ||
\sin^2\frac{\theta}{2} = \frac{1 - \cos\theta}{2} \\[3pt] | \sin^2\frac{\theta}{2} = \frac{1 - \cos\theta}{2} \\[3pt] | ||
\cos \frac{\theta}{2} = | \cos \frac{\theta}{2} = \left(\pi + \theta + 4 \pi \left\lfloor \frac{\pi - \theta}{4\pi} \right\rfloor \right) \sqrt{\frac{1 + \cos\theta}{2}} \\[3pt] | ||
\cos^2\frac{\theta}{2} = \frac{1 + \cos\theta}{2} \\[3pt] | \cos^2\frac{\theta}{2} = \frac{1 + \cos\theta}{2} \\[3pt] | ||
\tan \frac{\theta}{2} = \csc \theta - \cot \theta = \pm\, \sqrt\frac{1 - \cos \theta}{1 + \cos \theta} = \frac{\sin \theta}{1 + \cos \theta} \\[3pt] | \tan \frac{\theta}{2} = \csc \theta - \cot \theta = \pm\, \sqrt\frac{1 - \cos \theta}{1 + \cos \theta} = \frac{\sin \theta}{1 + \cos \theta} \\[3pt] |