Linjär olikhet: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 9: Rad 9:
}}  
}}  


I en ekvation så är just uttrycken som står på vardera sidan om likhetstecknet lika stora. Men det är inte alltid så att det vi vill beskriva kan skrivas på det sättet. Vi kallar uttryck där båda leden inte är lika stora för olikheter och istället för likhetstecknet = används då tecknen mindre än <math>\lt</math> och större än <math>\gt</math>. , <math>\le</math> och <math>\ge</math>.
I en ekvation så är just uttrycken som står på vardera sidan om likhetstecknet lika stora. Men det är inte alltid så att det vi vill beskriva kan skrivas på det sättet. Vi kallar uttryck där båda leden inte är lika stora för olikheter och istället för likhetstecknet = används då tecknen mindre än <math>\lt</math> och större än <math>\gt</math> samt <math>\le</math> och <math>\ge</math>.


=== Metoder ===
=== Metoder ===

Versionen från 23 september 2019 kl. 08.10

[redigera]
Mål för undervisningen Linjär olikhet

Linjär olikhet visas både grafiskt och algebraiskt. Du lär dig tecknen för olikhet och hur du hanterar dessa i beräkningar.


I en ekvation så är just uttrycken som står på vardera sidan om likhetstecknet lika stora. Men det är inte alltid så att det vi vill beskriva kan skrivas på det sättet. Vi kallar uttryck där båda leden inte är lika stora för olikheter och istället för likhetstecknet = används då tecknen mindre än [math]\displaystyle{ \lt }[/math] och större än [math]\displaystyle{ \gt }[/math] samt [math]\displaystyle{ \le }[/math] och [math]\displaystyle{ \ge }[/math].

Metoder

Vi tittar på två metoder att lösa linjära olikheter.

  1. Algebraisk
  2. Grafisk (Tallinjen eller GeoGebra)

Algebraisk lösning av olikheter

Viktigt
Som vanligt men tänk på -1

Du löser olikheter precis som vanliga ekvationer men det finns ett undantag:

Om du multiplicerar olikheten med (-1) byter du tecken.

[math]\displaystyle{ \lt ~blir~\gt }[/math] och
[math]\displaystyle{ \gt ~blir~\lt }[/math]


Grafisk lösning av olikheter

Som med ekvationer ritar du graferna för funktionerna av vänster led och höger led. Du hittar skärningspunkten. Beroende på olikhetstecknet är lösningen de x-värden som ligger till vänster om eller till höger om skärningspunkten. Det klarnar när du gör det i GeoGebra.

[redigera]

Testa grafiskt

[redigera]

Nedan ett exempel på grafisk lösning av uppgift två ovan.

[redigera]

Lös algebraiskt och grafiskt

Följande två uppgifter ska du lösa både algebraiskt med papper och penna och grafiskt i GeoGebra.

  1. [math]\displaystyle{ 2x+3 \lt 0.5x+2 }[/math]
  2. [math]\displaystyle{ - 0.2x+2.9 \gt 1.9 - 0.3 x }[/math]
[redigera]
Swayen till detta avsnitt: Linjär olikhet


läromedel: Linjära olikheter


Läs om Olikheter


Exit ticket