Komplexa tal Ma2c: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 1: Rad 1:
[[File:NumberSetinC.svg|NumberSetinC]]
 


__NOTOC__
__NOTOC__
= Teori =
= Teori =
[[File:NumberSetinC.svg|NumberSetinC]]
{{#ev:youtube|T647CGsuOVU|320|right|Imaginary Numbers Are Real, Part 1: Introduction}}
{{#ev:youtube|T647CGsuOVU|320|right|Imaginary Numbers Are Real, Part 1: Introduction}}
{{malruta | Komplxa tal
{{malruta | Komplxa tal

Versionen från 14 februari 2019 kl. 09.19


[redigera]

NumberSetinC

Imaginary Numbers Are Real, Part 1: Introduction
Mål för undervisningen Komplxa tal

Nu lär vi oss att använda komplxa tal för att lösa andragradsekvationer med ickereella rötter.


Komplexa tal

Det komplexa talplanet (arganddiagram). Varje komplext tal representeras av en realdel (Re) och en imaginärdel (Im)

De komplexa talen kan ses som en utvidgning av de reella talen. Ett komplext tal kan skrivas som

[math]\displaystyle{ z\ = a + b\,\mathrm i }[/math]

där det reella talet a är realdelen, det reella talet b är imaginärdelen och i är den imaginära enheten med egenskapen

[math]\displaystyle{ \ \mathrm i^2\ = {-1} }[/math]

Komplexa rötter

komplexa tal

Andragradsekvationer med ickereella rötter uppstår när vi behöver ta roten ur ett negativt tal. Då använder vi komplexa tal. Repetera gärna genom att titta på sidan Tal och talmängder

Definition
Komplexa tal


[math]\displaystyle{ \sqrt{-1} = i }[/math]
[math]\displaystyle{ i^2 = -1 }[/math]


Ett komplext tal består av en realdel [math]\displaystyle{ a }[/math] och en imaginärdel [math]\displaystyle{ b }[/math].

[math]\displaystyle{ z = a + bi }[/math]
[math]\displaystyle{ Re z = a }[/math]
[math]\displaystyle{ Im z = b }[/math]


Komplexa tal och andragradsekvationer

Utifrån den generella beskrivning av andragradsekvationen:

[math]\displaystyle{ x^2 + px + q = 0 }[/math]

med lösningen:

[math]\displaystyle{ x=-\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2-q} }[/math]

Ser vi att vi får komplexa rötter om diskriminanten

[math]\displaystyle{ \sqrt{(\frac{p}{2})^2-q} \lt 0 }[/math]