Addition och subtraktion av vektorer: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 100: Rad 100:


: [[Kaströrelse]]
: [[Kaströrelse]]
= GeoGebra =
https://www.geogebra.org/m/Cy8bxaKS
Hitta en GGB med avdrift för ett plan eller en båt
Länk till worksheet: https://www.geogebra.org/m/ty53wFpP
<html>
<iframe scrolling="no" src="https://www.geogebratube.org/material/iframe/id/92762/width/973/height/354/border/888888/rc/false/ai/false/sdz/true/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5" width="973px" height="354px" style="border:0px;"> </iframe>
</html>
<br>
Ovanstående GGB är skapad av Håkan Elderstig fria att använda enligt Creative Commons. Den finns att laddas ner från [http://www.geogebratube.org/material/show/id/2368 GeoGebratube].
<br>


= Uppgifter =
= Uppgifter =

Versionen från 18 oktober 2018 kl. 20.10

[redigera]
Mål för undervisningen Operationer på vektorer

Du lär dig addition, subtraktion och skalär multiplikatin med vektorer.


Komposanter

Definition

Termerna i en vektoraddition kallas för komposanter och summan av komposanterna kallas resultant.


I en figur kan man åskådliggöra summan av två vektorer som diagonalen i det parallellogram som bildas av de två vektorerna (resultanten har markerats med en blå pil i figuren till höger):

Texten från matteboken.se

Addition av vektorer

Digital resurs Wikipedia skriver om Vektorer på ett utmärkt sätt. Läs den!:

Sats


Kommutativa lagen för vektorer

Kommutativa lagen gäller för vektorer. Det spelar alltså ingen roll i vilken ordning de adderas det resulterar i samma vektor.

[math]\displaystyle{ \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} }[/math]


Exempel addition av vektorer

En båt åker för motor med kurs rakt norrut med farten 7 knop men en kraftig vind från väster ger en avdrift med hastigheten 2 knop. Vilken verklig kurs har båten?

Subtraktion av vektorer

Definition
Subtraktion av en vektor är ekvivalent med additionen av den motsatta vektorn.
[math]\displaystyle{ \mathbf{a} -\mathbf{b} = \mathbf{a} + (-\mathbf{b}) }[/math]


Multiplikation av en skalär och en vektor

Definition

En skalärprodukt är en serie additioner. Exempelvis är

[math]\displaystyle{ 3 \cdot \mathbf{a} = \mathbf{a} + \mathbf{a} + \mathbf{a} }[/math]

Skalärprodukten går att generalisera till multiplikation av ett reellt tal med en vektor.

[math]\displaystyle{ (-1) \cdot \mathbf{a} = -\mathbf{a} }[/math]

En enhetsvektor är en vektor med längden 1.


I GeoGebra kan du multiplicera en glidare med en vektor.

Enhetsvektorer parallella med axlarna i ett koordinatsystem är användbara.

Vektorer och trigonometri

Digital resurs Denna GeoGebra förklarar vektorer och trigonometri mm.:


Definition

En vektor [math]\displaystyle{ \mathbf{a} }[/math] (från origo) i ett koordinatsystem och vinkel v mot x-axeln kan delas upp i komposanter på x-axeln och y-axeln.

[math]\displaystyle{ \mathbf{a}_x = \mathbf{a} cos(v) }[/math]
[math]\displaystyle{ \mathbf{a}_y = \mathbf{a} sin(v) }[/math]


[redigera]

Geogebraövning

GeoGebra med tillämpning i fysik

Här har vi fällt in en GGB som är lite för stor.

Lista: (klicka expandera till höger)

Du kan behöva trycka ctrl- för att se hela GGB:n.



Tillämpningar av vektorer (och trigonometri)

Kloss på lutande plan
Kaströrelse
[redigera]

https://www.geogebra.org/m/Cy8bxaKS

Hitta en GGB med avdrift för ett plan eller en båt

Länk till worksheet: https://www.geogebra.org/m/ty53wFpP


Ovanstående GGB är skapad av Håkan Elderstig fria att använda enligt Creative Commons. Den finns att laddas ner från GeoGebratube.

[redigera]

Uppgift 1

Rita ut och beräkna längden av vektorn [math]\displaystyle{ \mathbf{w} = 2 \mathbf{u} - 3 \mathbf{v} }[/math] om [math]\displaystyle{ \mathbf{u} = (4, 3) }[/math] och [math]\displaystyle{ \mathbf{v} }[/math] är vektorn som börjar i punkten [math]\displaystyle{ (3, 2) }[/math] och slutar i punkten [math]\displaystyle{ (4, 5) }[/math].

Uppgift 2

Bestäm enhetsvektorn för [math]\displaystyle{ \mathbf{w} = \mathbf{u} - 3 \mathbf{v} }[/math] om [math]\displaystyle{ \mathbf{u} = (-1, 4) }[/math] och [math]\displaystyle{ \mathbf{v} = (0, 2) }[/math].

Uppgift 3

Dela upp [math]\displaystyle{ \mathbf{w} = 5 \mathbf{u} - 2 \mathbf{v} }[/math] i dess x- och y-komposanter om [math]\displaystyle{ \mathbf{u} = (2, 5) }[/math] och [math]\displaystyle{ \mathbf{v} = (-4, 1) }[/math]


Ett uppgiftsblad som repetition

Här finns uppgifter: Diagnos 7 finns här med repetition av trigonomatri samt nummer 7 och 8 om vektoorer.

[redigera]
Swayen till detta avsnitt: Operationer med vektor


läromedel: Räkna med vektorer



Fördjupning

Osäkert om detta passar in här. kanske i en Sway.

TEDEd om Pixar och matematik Sub Division borde göra sig fint i GeoGebra. Testa.

Exit ticket

Exit ticket: operationer på vektorer