Addition och subtraktion av vektorer: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 103: Rad 103:
= Uppgifter =
= Uppgifter =


Här finns uppgifter: [[Media:Veckodiagnos_7_version2.pdf|Diagnos 7 finns här]].  
Här finns uppgifter: [[Media:Veckodiagnos_7_version2.pdf|Diagnos 7 finns här]] med repetition av trigonomatri samt nummer 7 och 8 om vektoorer.
 


= Lär mer =
= Lär mer =

Versionen från 18 oktober 2018 kl. 19.57

[redigera]
Mål för undervisningen Operationer på vektorer

Du lär dig addition, subtraktion och skalär multiplikatin med vektorer.


Komposanter

Definition

Termerna i en vektoraddition kallas för komposanter och summan av komposanterna kallas resultant.


I en figur kan man åskådliggöra summan av två vektorer som diagonalen i det parallellogram som bildas av de två vektorerna (resultanten har markerats med en blå pil i figuren till höger):

Texten från matteboken.se

Addition av vektorer

Digital resurs Wikipedia skriver om Vektorer på ett utmärkt sätt. Läs den!:

Sats


Kommutativa lagen för vektorer

Kommutativa lagen gäller för vektorer. Det spelar alltså ingen roll i vilken ordning de adderas det resulterar i samma vektor.

[math]\displaystyle{ \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a} }[/math]


Exempel addition av vektorer

En båt åker för motor med kurs rakt norrut med farten 7 knop men en kraftig vind från väster ger en avdrift med hastigheten 2 knop. Vilken verklig kurs har båten?

Subtraktion av vektorer

Definition
Subtraktion av en vektor är ekvivalent med additionen av den motsatta vektorn.
[math]\displaystyle{ \mathbf{a} -\mathbf{b} = \mathbf{a} + (-\mathbf{b}) }[/math]


Multiplikation av en skalär och en vektor

Definition

En skalärprodukt är en serie additioner. Exempelvis är

[math]\displaystyle{ 3 \cdot \mathbf{a} = \mathbf{a} + \mathbf{a} + \mathbf{a} }[/math]

Skalärprodukten går att generalisera till multiplikation av ett reellt tal med en vektor.

[math]\displaystyle{ (-1) \cdot \mathbf{a} = -\mathbf{a} }[/math]

En enhetsvektor är en vektor med längden 1.


I GeoGebra kan du multiplicera en glidare med en vektor.

Enhetsvektorer parallella med axlarna i ett koordinatsystem är användbara.

Vektorer och trigonometri

Digital resurs Denna GeoGebra förklarar vektorer och trigonometri mm.:


Definition

En vektor [math]\displaystyle{ \mathbf{a} }[/math] (från origo) i ett koordinatsystem och vinkel v mot x-axeln kan delas upp i komposanter på x-axeln och y-axeln.

[math]\displaystyle{ \mathbf{a}_x = \mathbf{a} cos(v) }[/math]
[math]\displaystyle{ \mathbf{a}_y = \mathbf{a} sin(v) }[/math]


[redigera]

Geogebraövning

GeoGebra med tillämpning i fysik

Här har vi fällt in en GGB som är lite för stor.

Lista: (klicka expandera till höger)

Du kan behöva trycka ctrl- för att se hela GGB:n.



Tillämpningar av vektorer (och trigonometri)

Kloss på lutande plan
Kaströrelse
[redigera]

Här finns uppgifter: Diagnos 7 finns här med repetition av trigonomatri samt nummer 7 och 8 om vektoorer.

[redigera]
Swayen till detta avsnitt: Operationer med vektor


läromedel: Räkna med vektorer



Fördjupning

Osäkert om detta passar in här. kanske i en Sway.

TEDEd om Pixar och matematik Sub Division borde göra sig fint i GeoGebra. Testa.

Exit ticket

Exit ticket: operationer på vektorer