Begreppet absolutbelopp: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 46: Rad 46:
: <math>  |x - 1 | - 3 = |x + 3 | </math>  
: <math>  |x - 1 | - 3 = |x + 3 | </math>  


 
Nedan en grafisk tolkning:
 
<html>
<iframe scrolling="no" title="absolutbelopp i ekvation" src="https://www.geogebra.org/material/iframe/id/brpzz9gk/width/772/height/534/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="772px" height="534px" style="border:0px;"> </iframe>
</html>
}}
}}



Versionen från 10 augusti 2018 kl. 11.57

Teori

Graf över absolutvärdesfunktionen för reella tal
Absolutbeloppet motsvaras av ett tals avstånd till noll, (eller origo), oavsett dess riktning. Den röda vektorn pekar på ett tal vars absolutbelopp är lika stort som samtliga tal på den gröna cirkeln.

Absolutbeloppet, ibland kallat absolutvärdet eller beloppet av ett tal x betecknas |x| och är ett positivt reellt tal eller noll och kan ges den geometriska tolkningen som ett tals avstånd till origo eller 0-punkten i det fall talet kan representeras på tallinjen.

Absolutbeloppet skrivs med två vertikala streck. Absolutbeloppet av x skrivs [math]\displaystyle{ |x| }[/math].

Absolutbeloppet är alltid positivt, dvs [math]\displaystyle{ |x| \gt = 0 }[/math]

Definition
Abolutbelopp

Absolutbeloppet av ett reellt tal x definieras av

[math]\displaystyle{ |x|=\left\{\begin{matrix} x, & x \ge 0 \\ -x, & x \lt 0 \end{matrix}\right. }[/math]


Exempel

Exempel
Absolutbeloppet
[math]\displaystyle{ | -3 | = 3 }[/math]
[math]\displaystyle{ |x - 3 | = x - 3 }[/math] om [math]\displaystyle{ x \geq 3 }[/math]
[math]\displaystyle{ |x - 3 | = -(x-3) = 3-x }[/math] om [math]\displaystyle{ x \lt 3 }[/math] och

Tänk dig en tallinje. : [math]\displaystyle{ |x - 3 | }[/math] är avståndet mellan : [math]\displaystyle{ x }[/math] och [math]\displaystyle{ 3 }[/math] .

Regel för kvadratrötter

[math]\displaystyle{ \sqrt{x} = |x| }[/math]


Exempel - Absolutbelopp i båda leden

Exempel
En knepigare uppgift

Om ekvationen innehåller två absolutbelopp behöver vi titta på flera fall. Lös ekvationen nedan:

[math]\displaystyle{ |x - 1 | - 3 = |x + 3 | }[/math]

Nedan en grafisk tolkning:


Aktivitet

Absolutbelopp på tallinje

Två

I denna GGB kan du studera en funktion av absolutbeloppet.

Uppgifter

Alla börjar med dessa uppgifter innan ni jobbar vidare med andra uppgifter. Skriv på ett papper och lägg det framför er när ni är klara så att din lärare ser hur det gått. Om det är oklarheter så tar vi upp det gemensamt.

1. Vad är [math]\displaystyle{ | -2.34 | }[/math] ?

2. Vilka värden kan [math]\displaystyle{ | 2 - x | }[/math] anta?

3. Lös ekvationen [math]\displaystyle{ | x-4 | = 5 }[/math]

Lär mer


Wikipedia Absolute value


Begreppet absolutbelopp, av Åke Dahllöf

En GeogebraBook

Tim B har samlat förklaringar och övningar som du kan göra.

Superformeln

Den här övningen kan man även göra i Python.

Uppgift
Undersök superformeln

Den finns på webbplatsen Spelprogrammering.nu med kod i Javascript.

Du använder Javascript, Wolfram Alpha och Geogebra i din undersökning.

Redovisa några snygga grafer i ppt. Ange dina parametrar och försök förklara varför kurvan ser ut som den gör.

Ta också med en definition samt en förklaring av absolutbeloppet. Undersök hur superformeln uppför sig utan absolutbelopp.

Kan du fundera ut en operation i miniräknaren eller datorn som ger samma resultat som absolutbeloppet utan att man använder just absolutbeloppet?