Parabeln: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 67: | Rad 67: | ||
=== GeoGebra === | === GeoGebra === | ||
=== En PhET-simulering === | |||
PhET står för Physics, Education & Technology och är en avdelning vid universitetet i Colorado och de tillverkar många fina simuleringar inom matematik, fysik och kemi. | |||
: <math>y = ax^2 + bx +c </math> | |||
<html><iframe src="https://phet.colorado.edu/sims/equation-grapher/equation-grapher_en.html" width="800" height="600" scrolling="no" allowfullscreen></iframe></html> | |||
=== GeoGebra som visar samma avstånd === | |||
En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen. | |||
<html> | |||
<head> | |||
<title>GeoGebra Dynamisk arbetsbok</title> | |||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> | |||
<meta name="generator" content="GeoGebra" /> | |||
<style type="text/css"><!--body { font-family:Arial,Helvetica,sans-serif; margin-left:40px }--></style> | |||
</head> | |||
<body> | |||
<table border="0" width="926"> | |||
<tr><td> | |||
<p> | |||
</p> | |||
<script type="text/javascript" language="javascript" src=" | |||
http://www.geogebra.org/web/4.2/web/web.nocache.js"></script><article class="geogebraweb" data-param-width="926" data-param-height="435" | |||
data-param-showResetIcon="true" data-param-enableLabelDrags="true" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="false" enableLabelDrags="true" data-param-ggbbase64="UEsDBBQACAAIADRpskIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAA0abJCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZ3W7bOhK+7nkKQte1zV/9FHYPnLMotkB6Wmy6i8XeURJjs5ElrUQ7TtHX2SfZF9shKdmynbiNc06BbepQJIcznPmGH0fO9NftqkAb1bS6KmcBGeMAqTKrcl0uZsHa3I7i4Ne3v0wXqlqotJHotmpW0swCPqbBfh30xpTZxTqfBamMQkJ5PorTJBzxJBSjOMExdIXIMY8ykeQBQttWvymr3+VKtbXM1E22VCt5XWXSOJ1LY+o3k8n9/f24tz6umsVksUjH2xYUwM7LdhZ0D29A3cGie+bEKcZk8s8P1179SJetkWWmAmS9Wuu3v7ya3usyr+7Rvc7NchYkNAzQUunFEtwUXARoYoVq8LVWmdEb1cLSQdf5bFZ14MRkaedf+SdU7NwJUK43OlfNLMAQK0IwEYTEUYIhQHGAqkar0nTCpDM66dVNN1rde732yZnkOIkAA93qtFCz4FYWLbily9sGQgo7atbQbc1DoVLZ9P39hshr+AEB/VVZXYCdjwPMYPzafiL4CIH9XoaGA2SqqnBaMfr2DVFMMXptG+IbCk0Y+insxzDzDfUN943wMtwv516UexnuZTg742TX33vZDRy42TvJHnMyhI/z/sjJeOAksU58Q8Tu3jUM2X0Tt3/b8K4b+m7kGoJ9Q7rJ2P5KbCd8oUfsIo/IwKpPhucY7U1GmP24SfoSkzsvKeGnJql4wstzwT0+E0+7ScQgsmDK/XefE4uMvuQUXmAw5D/bxQj/DBenk57lpt3RQ+3SynapY9SqtYzDEiTcOSJIwMEMI+AJgUgCTWQPKEVEIC6gS2IU2jZCzJ5JjhiKkZUjDDl6ETH84pFTFiIByuxo5E8uYhwJhohjJY6Ai5BjNmA5ykBCCCRgkTVPqFXBQsRD6LEYcdijJbXIEgeDhdAH8xQxgphdTCJEQxRafYRbsgxju3VQSVGIUehYA3gRONHzIcjHiFlvIMPrqtW76C5VUfdBcnHUZb02B7HLVnn/aKp6h6GTzqvs7moX625GydYMxeAq2t94/mo6uBBfTQuZqgLKhhubCAhtZGGPsLNwW5UG9UnA/diikfVSZ+2NMgZWteiL3MhradT2HUi3vW1n2t3TU7XOCp1rWf4DssSqsApRf207Xuqvbd5byaqqyW8eWkgdtP2XaipgkyQcs0TEmIeChHEMd+hDNyP4GNMI6CYSlFMWwzlrM2lzXuAx4wwnnGMaMstHD4/P0MQbVpudY3Kr2j74i8Yepy6stvO+vaqK/VBd6dL8JmuzblwFBiejsS7Ny0WhXGQd4lDLZHdptb3xIWVe1+eHWtklbgPp4reqqBrUWL+giFl0bepbJ2N3tpPCTgY7CdxjpPPdPEmok3Bt6lsnBaD7rXWekt5NgnszunU0AsqHSekyxlZG61Kb675jdHa399TK/75epZBs3bJDleQPUjmdHKXX9E41pSp8EpWA5Lpatz6rd5n5arpu1SdplvMy/5tawHn8JC0nGlDtRfc7zlWmV7DQj3ehkxbWv8NW/WiuFo3qPSxcyesD62bxMKVPhp2qd021el9uPkPOHG11Oun9mbZZo2ubmigFkr5T++zLdSuB4vPhOnC+BS8yyzYQSGODGCC5NsuqcVUtHFkIa4w+yC/AkJCL9qgWagXVLDIuI0GFznbYZK5OtiCgKv0CBHKE3SC6ML9PYswPEhTJol5KW0x3ASjkg2oOQuIUfqjy40ABDs4bYIXaZ0StlM8l0x0hVIM6dwIH29knugHmuoPKHBJIDBbZh7/qPFeOlz0P6IUqN+BlBSmBtthvGD3g7mXra/+wJbNg5J4eSCf0lfg5pwj23OgtmoP8CNuXr3kvNqf9yjnrh3j/IAYq1L9Lv/3WnwW1rQudadPlv8fsBD3r9Q4cWN/AwBf1HRD3eT/EcEgxRLALMCSPY4jHP46iOz8t2vZI9EBAiu22cQnQFwXX8f0uau+qu3X74sg6mv9TI0t+NLKsi+wuBZ2/9tbyRsVw9IjShkHLqtVKljkqXcH5yQVtX+hIbFnFx2Rt+pG5V9It/U7k5xdFvb9YCaZ/NCtdFnc+pvBP4DDEURzxiDoU6JjGNIKXpZBTAW/n/CwmyeOY0POY/EV336scwjKHiJA+sY8RkpvW/Pc/ZT7fTT8NV7leqWZwixytdV+RyGLdbZYfeSzOn5ghbuS8nzdqYcef5eZ5z9pO486zFxPAJWlIj1MJLpmIRFQkCROQSUkkEpdMo0dyzGYTHYdhGAmSxJSFlBNxhkrp86hUr/ZU6iJb2CPwvrRllnKFyWlhdqdUbevhj+XnRpat/drysCJ7GuKPDdQ2i6qUxbW9+h5FejuHAvQE6fQ80gc3aXoKc/+qfrYOeinQ+ARo0pE17sj6FOA/BcmnAdghexT7ffHhMEhP4n/1HMq/uuichb4KtU3qm5cj8Dhrj+h3Lk920eV5lsCuTkKaP4+88p9IXh9vb1tlbAAZ9xEj9Me47fR6GOb/iMRjHNMYU0CEhglO/o+obDJ8X3PfnXR/O3n7P1BLBwgoZTdZXwcAAOsZAABQSwECFAAUAAgACAA0abJCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADRpskIoZTdZXwcAAOsZAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA9wcAAAAA"></article> | |||
<p> | |||
</p> | |||
<p><span style="font-size:small">18 Maj 2013, Skapat med <a href="http://www.geogebra.org/" target="_blank" >GeoGebra</a></span></p> | |||
</td></tr> | |||
</table><script type="text/javascript"> | |||
var ggbApplet = document.ggbApplet; | |||
function ggbOnInit() {} | |||
</script> | |||
</body> | |||
</html> | |||
Länk till filen på Geogebratube: http://www.geogebratube.org/material/show/id/39100 | |||
{{uppgruta| '''Återskapa pHET-en ovan i GeoGebra''' | {{uppgruta| '''Återskapa pHET-en ovan i GeoGebra''' |
Versionen från 14 mars 2018 kl. 22.19
Teori
Definition |
---|
En parabel är den geometriska orten för punkter i ett plan vilkas avstånd till en given punkt (brännpunkten eller fokus) och till en given rät linje (styrlinjen) är lika. |
Här visas andragradsfunktionen på formen
Mer om parabelns ekvation
Definition |
---|
|
Uppgift |
---|
Fundera:
|
Parabelns egenskaper i GeoGebra 1
Du kan lära dig litet om hur parabeln fungerar och vad den har för egenskaper med denna övning:
Datorövning: Malin C GGB-övning
GeoGebra: andragradsfunktion med styrlinje och fokus
Övning - hitta funktionen om du vet fokus och styrlinje
Den här uppgiften utgår ifrån att du vet styrlinjen och fokuspunkten men ska ta fram funktionen. Se figuren till höger.
- Börja med att markera en punkt (x,y) på grafen i första kvadranten.
- Skriv ett uttryck för avståndet från (x, y) till linjen.
- Skriv ett uttryck för avståndet från (x, y) fokus.
- Det gäller för en parabel att avståndet från (x, y) till fokus är samma som avståndet från (x, y) till linjen. Visa detta genom att sätta de två uttrycken lika.
- Lös ut y ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna så att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.
Nu är du klar. Ekvationen du fick beskriver parabeln.
Aktiviteter
Praktisk övning
Uppgift |
---|
Hur gjorde man förr?
Konstruera parablar med hjälp av snöre, penna, fokalpunkt och styrlinje.
|
GeoGebra
En PhET-simulering
PhET står för Physics, Education & Technology och är en avdelning vid universitetet i Colorado och de tillverkar många fina simuleringar inom matematik, fysik och kemi.
- [math]\displaystyle{ y = ax^2 + bx +c }[/math]
GeoGebra som visar samma avstånd
En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen.
18 Maj 2013, Skapat med GeoGebra |
Länk till filen på Geogebratube: http://www.geogebratube.org/material/show/id/39100
Uppgift |
---|
Återskapa pHET-en ovan i GeoGebra
Målet är att skapa en snygga applikation som kommunicerar matematik genom att den som använder din GeoGebraapplikation ska lära sig något. Skriv in funktionen på allmän form. Låt glidarna skapas. Placera ut objekten snyggt. Sätt färg. Välj textstorlek och tjocklek på kurvan. Skriv en förklarande text så att användaren får en uppgift att utföra och lär sig något. När du har en snygg applikationen visar du den för någon i rummet som inte sett den innan och ber om respons. Nu tar du responsen och förbättrar din applikation och sedan sparar du den på din profil. |
Lär mer
|
|
|