Räta linjen Ma2c: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Ingen redigeringssammanfattning
Rad 2: Rad 2:


Centralt innehåll:  
Centralt innehåll:  
*Begreppet kurva, '''räta linjen'''s och parabelns ekvation samt hur analytisk geometri binder ihop geometriska och algebraiska begrepp.  
*Begreppet kurva, '''räta linjens''' och parabelns '''ekvation''' samt hur analytisk geometri binder ihop geometriska och algebraiska begrepp.  
}}  
}}  



Versionen från 23 februari 2018 kl. 12.04

Mål för undervisningen Räta linjen

Centralt innehåll:

  • Begreppet kurva, räta linjens och parabelns ekvation samt hur analytisk geometri binder ihop geometriska och algebraiska begrepp.


Teori

Räta linjens funktion

Repetition: Förra gången stiftade vi bekantskap med en parabel som naturligtvis låter sig ritas i GeoGebra. En av kurvorna är precis den som kommer ur bokens Exempel 1 på sidan 197.

Man kan naturligtvis rita kurvan i Wolfram Alpha oxå. Det är bara att högerlicka på uttrycket i GeoGebra och kopiera till inmatningsfältet. Wolfram Alpha finns förresten som en Gadget till er som har Vistra eller 7:an.

Här kommer en grafisk lösning till exempel 2 på sidan 106 (GeoGebra):

Andra ställen att öva grunderna i räta linjen

Klurig läxa

Tristan och Isolde

Koordinatgeometri

s. 92- 101

RikardM - Avståndsformeln

Mittpunktsformeln

"P1" är punkten 1, "P2" är punkten 2, och "M" visar var exakt var mitten av punkterna P1 och P2 är. Bilden är tagen från Wikipedia.
Mittpunktsformeln är en mattematisk ekvation.
Två punkter P1 och P2 som kan ligga precis var som helst i 
ett  kordinatsystem, med hjälp av mittpunktsformeln bestämma 
punkten mitt emellan Punkt1 och Punkt2 som har benämningen M.


Definition 1:

(X1,Y1) och (X2,Y2)
(Xm,Ym)= (X1+X2/2),(Y1+Y2/2)
Förklaras i videon

Definition 2:

Det gick inte att placera definitionen från Wikipedia, eftersom den inte stöds,
gå in på länken och se efter själv:Wikipedia, Mittpunktsformeln
O = Origo.
M = Punkten mellan P1 och P2.
P1 = Punkt1.
P2 = Punkt2.

Exepel på problem

Du har två punkter (1, -2) och (-3, 5), hitta mittpunkten av de två punkterna med hjälp
av mittpunktsformeln.

Lösning

y 1 = -2, x 2 = -3 och y 2 = 5.

Länkar - Mittpunktsformeln

y=kx+m

       K = lutningen. Man kan räkna ut K om man har två koordinater t ex x1-x2/y1-y2 = K
       M = Var linjen skär y-axeln
       Exempel uträkning med koordinater.
       (-1,1) (1,5)
       y= valfri Y-koordinat, vi väljer 5. Formeln blir då 5=kx+m
       vi räknar ut k
       k=(x1-x2)/(y1-y2)= 5-1/1-(-1) = 4/2 = 2, k=2. Formeln blir då 5 = 2x+m
       x = 1. Formeln blir: 5 = 2*1+m. Tar bort 2 på båda sidor. 
       M= 3

Geogebra Undersök med Geogebra-applet: Räta linjens ekvation

Exempel i GGB där du kan ändra och flytta lnjen med glidare

Länkar:

Riktningskoefficienten

Ma2C: Riktningskoefficienten, sidan 102 - 104


Håkan länkar

riktningskoefficienten

Slope picture
Definition
Riktningskoefficienten


[math]\displaystyle{ k = \frac {y_2 - y_1}{x_2 - x_1} }[/math]
Exempel
Bestäm k

Bestäm riktningskoefficienten för den linje som går genom punkterna (1.2) och (4.-3)

Vi räknar ut riktningskoefficienten med hjälp av x- och y-värdena ovan:

[math]\displaystyle{ k = \frac {-3-2}{4-1} = \frac{-5}{3} =- \frac {5}{3} }[/math]


http://www.matteguiden.se/wp-content/uploads/2010/01/linjes-lutning-4.png

http://www.matteguiden.se/wp-content/uploads/2010/01/linjes-lutning-3.png


Definition - räta linjens ekvation

[math]\displaystyle{ y = kx+m }[/math]

Ett Exempel + uträkning till exemplet

Fråga 1

Erika anställer en städslav och får betala för 4 timmar 450 kr och för 9 timmar 990 kr Erika betalar både grundavgift och en avgift per timme. Hur stor är avgiften Erika måste betala?

Uträkning till fråga 1

Tänk så här:

Kostnaden ökar med 990kr-450kr= 540kr

Tiden ökar med 9-4= 5timmar 990-450/9-5=540/2= 225

Avgiften per timme blir = 225 kr

Länk

[riktningskoefficienten ]

Ta fram räta linjens ekvation

Här ska vi lära oss hur man tar fram räta linjens ekvation om man bara har två punkter att utgå ifrån eller om man har en punkt och linjens lutning. Det är alltså så att om man vet två saker om sin lenje så kan man ta fram räta linjens ekvation och skriva den på formen y 0 kx + m.

Det handlar alltså om att hitta värdena för k och m.

Definition
Att hitta räta linjens ekvation

För att rita en rät linje eller för att skriva dess ekvation behöver du antingen:

  1. två punkter på linjen eller
  2. en punkt på linjen och dess lutning


En punkt på linjen kan vara att veta var den skär en axel, exempelvis y-axeln.

Hitta k

Egentligen kokar det ner till att man behöver hitta k och m. Om man inte redan har fåt k angivet i uppgiften så tar man fram det på det viset vi lärt oss tidigare:


[math]\displaystyle{ k = \frac {y_2 - y_1}{x_2 - x_1} }[/math]

Hitta m

Om vi har k så är vi halvvägs framme vid att kunna skriva räta linjens ekvation. Det som saknas är ett m-värde.

m-värdet får vi genom att använda en punkt på linjen. Punkten har ju ett värde på x och y som vi sätter in i räta linjens ekvation tillsammans med vårt k-värde.

[math]\displaystyle{ y = kx + m }[/math]

Då är det ju bara m som är obekant.

Exempel
Bestäm m
[math]\displaystyle{ k = 2 }[/math] och en punkt är [math]\displaystyle{ (3,5) }[/math]

Sätter man in värdena så får man:

[math]\displaystyle{ 5 = 2 * 3 + m }[/math]

Vilket ger:

[math]\displaystyle{ m= 5 -2 * 3 }[/math]
[math]\displaystyle{ m= 5 -6 }[/math]
[math]\displaystyle{ m= -1 }[/math]

Således: kan vi skriva räta linjens ekvation som

[math]\displaystyle{ y= 2 x - 1 }[/math]


Parallella och vinkelräta linjer

Onsdag 10.30-12

s. 110- 112

Två linjer är parallella om de har samma riktningskoefficient.

Parallella linjer

k1 = k2

Två linjer är vinkelräta om produkten av riktningskoefficienterna är minus ett.

Vinkelräta linjer

k1 * k2 = -1


Vinkelräta linjer - GeoGebra Dynamisk arbetsbok

Vinkelräta linjer

18 April 2013, Skapat med GeoGebra

Räta linjer finns på GeoGebraTube



Parallella och vinkelräta linjer

Parallel Lines

http://www.youtube.com/watch?v=nZuko8vyVs4

http://www.matteboken.se/lektioner/matte-2/funktioner/linjara-funktioner-y-=-kx-plus-m

Ytterligare en sida för dej som fortfarande inte förstår vad det handlar om.

http://www.malinc.se/math/functions/perpendicularlinessv.php

Fin sida för dej som satsar på högre betyg på provet än E/D. c:

Allmän form (linjens ekvation)

Wikipedia skriver om injär_ekvation

Ma2C: allmänn form, sidan 113- 115


En linjär ekvation kan även skrivas på så kallad allmän form:

[math]\displaystyle{ Ax + By + C = 0\, }[/math]

eller på standardform:

[math]\displaystyle{ A x +By = C.\, }[/math]

Om man känner till riktningskoefficienten och en punkt (x_0, y_0) på linjen kan man skriva den på enpunktsform:

[math]\displaystyle{ y-y_0 = k(x-x_0)\, }[/math]

Verklighetsbaserad uppgift på linjära samband

Hyr skidutrustning

Uppgift: Kostnaden för att hyra skidor i Romme

1. Priset för en vuxen at hyra skidutrustning under en dag är 270 kr. Om man hyr i fem dagar kostar det 850 kr. Gör en modell för detta och beräkan priset per dag och den eventuella startkostnaden. Redovisa en ekvation för priset som funktion av antalet dagar.

2. Gå in på länken nedan och studera priserna. Rita grafer. Är priset en linjär funktion av tiden? http://www.rommealpin.se/priser-1__1053

Facit: (klicka expandera till höger)



Aktivitet

Uppgift
xxx'



Lär mer

Swayen till detta avsnitt: [https xxx]


läromedel: xxxxx


Läs om xxxxx



  • Typtal räta linjens ekvation. Grundläggande begrepp som lutning och m-värde.
  • Khan-övning i att förstå räta linjer. Den är enkel men det kommer fler med ökande svårighet sedan.
  • Häfte med enkla uppgifter på y=kx+m som heter Övningsblad räta linjens ekvation. Finns bara på min dator. Jag har delat ut det.
  • Två sidor med Blandade svåra uppgifter på räta linjen. Även dessa är från Uppgiftsbanken och (c). Därför finns filen på min dator men kan skrivas ut vid behov.
  • MalinC förklarar Räta linjen Här finns det bra förklaringar och en del övningar. jag kan rekommendera fler delar av hemsidan. Sök efter sånt som har med vårt kapitel att göra.
  • En laboration om knutar på ett snöre från sid 109 i boken.
  • En stencil med två räta linjen där du gör en värdetabell, en graf och en ekvation. Tre representationer alltså.

Exit ticket