Index, lån, amortering: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 39: Rad 39:
* kvartal {{=}} ett fjärdedels år
* kvartal {{=}} ett fjärdedels år
* lånebelopp {{=}} de pengar som lånats
* lånebelopp {{=}} de pengar som lånats
* låneelöfte {{=}} innan köparen börjar titta på hus eller lägenheter kan hen få ett besked från banken om hur mycket hen kan få låna och till viljka villkor
* lånelöfte {{=}} innan köparen börjar titta på hus eller lägenheter kan hen få ett besked från banken om hur mycket hen kan få låna och till vilka villkor
* löptid {{=}} hur länge pengarna lånats ut
* löptid {{=}} hur länge pengarna lånats ut
* återbetalningstid {{=}} hur länge pengarna lånats ut
* återbetalningstid {{=}} hur länge pengarna lånats ut

Versionen från 24 oktober 2017 kl. 07.23

Mål för undervisningen Index, lån och amortering

Du lär dig hur man skapar och läser av en indextabell.

Du lär dig hur man beräknar kostnaden för lån över flera år eller vad ett ackumulerat sparande kan ge.

Du ska lära dig att skriva in funktioner i GeoGebra samt att utföra beräkningar med formler i Excel.

Swayen till detta avsnitt: [Index]


läromedel: Index och lån


Läs om Index


Teori

Konsumentprisindex

Definition
Index

Ett index är förändringsfaktorn multiplicerat med 100 %. Vid indexuppräkning behöver man en starttidpunkt, exempelvis ett år då index börjar vid 100 %.


Konsumentprisindex

Lån och räntor

Begrepp kring lån

Definition
Begrepp:
  • amortering = avbetalning
  • annuitestlån = ett lån där ränta och amortering kombinerats så att lånekostnaden är samma varje månad
  • betalningsanmärkning = hinder för kreditvärdighet som beror på obetalda räkningar etc
  • budgivning = flera intresserade köpare lägger högre bud om hur mycket de är villiga att betala tills en finns kvar med det högsta budet
  • kredit = lån
  • kreditvärdig = om man får låna pengar
  • kvartal = ett fjärdedels år
  • lånebelopp = de pengar som lånats
  • lånelöfte = innan köparen börjar titta på hus eller lägenheter kan hen få ett besked från banken om hur mycket hen kan få låna och till vilka villkor
  • löptid = hur länge pengarna lånats ut
  • återbetalningstid = hur länge pengarna lånats ut


Exempel med förändringsfaktor

Vad händer om ränta läggs på ränta? Det kan vara dina pengar på ett sparkonto eller i ett värre fall någon som lånat pengar utan kunna betala tillbaka. Det händer till exempel när människor tar så kallade SMS-lån. I båda fallen kommer det utlånade beloppet att öka exponentiellt.

Om lånebeloppet till exempel är [math]\displaystyle{ 15 000 \: kr }[/math] och räntan är [math]\displaystyle{ 12 }[/math]% per år kan vi skriva hur lånet ökar med hjälp av förändringsfaktorn:

Efter ett år är det nya beloppet [math]\displaystyle{ 15 000 \cdot 1.12 = 16 800. }[/math]
Beloppet har alltså ökat (om man inte betalat räntan) så efter två år är det nya beloppet [math]\displaystyle{ 16 800 \cdot 1.12 = 18 816. }[/math]
Men detta kan ju skrivas som [math]\displaystyle{ 15 000 \cdot 1.12 \cdot 1.12 = 18 816 }[/math]
eller [math]\displaystyle{ 15000 \cdot 1.12^2 = 18 816 }[/math]
Beloppet ökar alltså mer och mer och efter [math]\displaystyle{ x }[/math] år är beloppet uppe i [math]\displaystyle{ 15 000 \cdot 1.12^x }[/math]
Definition
Exponentialfunktioner

Exponentialfunktionerär en klass av funktioner som kännetecknas av att funktionsvärdets ändringstakt är proportionell mot funktionsvärdet. Exempelvis kan ränta på ränta beräknas som

[math]\displaystyle{ slutbeloppet = r^x \cdot startbeloppet }[/math]

där [math]\displaystyle{ r^x }[/math] är en exponentialfunktion, den årliga räntefaktorn är r (till exempel 1,12 för 12 % ränta) och x antalet år.

Exponentialfunktionerna kan skrivas på formen:

[math]\displaystyle{ f(x) = C \cdot a^x }[/math]


Amortering

När man lånar pengar behöver man betala tillbaks lånet. Återbetalningen delas ofta upp i mindre delar. Man kan till exempel betala en del varje månad. Om lånet löper på fem år betalar man en sextiondel varje månad i fem år (60 månader).

Beräkning av lånekostnad

Exempel

I detta exempel har amortering och ränta summerats år för år där återbetalningstiden är 40 år. Formler och data har kopierats rad för rad vilket gör det synnerligen enkelt och snabbt.

Exempel med amortering och räntekostnad i Excel


Aktivitet

Undersök exponentialfunktionen genom att titta på grafen

Skriv in [math]\displaystyle{ y = 15 000 \cdot 1.12^x }[/math] i GeoGebra. Vad kan du säga om grafen?

Genom att trycka in Shift och klicka och dra på axlarna kan du skala dem så du får tusental på y-axeln och ental på x-axeln.

Använd Excel

Nu ska vi backa tillbaka och undersöka år för år vad som händer när exempelvis ett lån ökar år för år genom att räntan läggs på lånet.

Det går bra med vilket kalkylprogram som helst.

Uppgift
Undersök ränta på ränta med Excel

Välj ett belopp (ex 8000 kr) som du ska sätta in på ett sparkonto och tänk dig att du får 7 % i ränta. Det är kanske inte rimligt i dagsläget men det kunde ju bara en årlig prognos för avkastningen på en aktiefond.

  1. I cell B1 skriver du 8000, i B2 7 och i B3 beräknar du förändringsfaktorn genom att skriva = (klicka på B2) /100 + 1.
  2. I cell B4 multiplicerar du sparbeloppet med förändringsfaktorn
  3. I kolumn A skriver du rubriker till dina rader
  4. I C-kolumnen ska du klura ut hur mycket sparbeloppet ökat efter år två
  5. Upprepa för år tre och fyra.
  6. Högerklicka på ettan i rad ett och lägg till en rad där du kan skriva rubriker på kolumnerna.
  7. Markera kolumn C och kopiera ut på fler kolumner. Hur mycket pengar har du efter 30 år?
  8. Ändra belopp och ränta i kolumn B och se hur det påverkar resultatet.


Två helt olika elevlösning som ger poäng men har olika kvaliteter

Uppgift
Vilken lösning är bäst?

I nedanstående två lösningar finns det en som spar tid både för lärare och elev.

Diskutera: Vilken är bäst och varför?

Två elevlösningar på uppgift där priset först höjs och sedan sänks.


Utforska en modell

Det här är en omfattande GeoGebra med en modell av lån med amortering. Undersök hur den fungerar. Vilken formel ligger i grunden av konstruktionen?

Fler beräkningsverktyg

Testa även GeoGebras kalkylark och kombinationen med grafer.

Testa vad Wolfram kan göra.

Om du behöver repetera

Ränta

Mikael Bondestam om lån, ränta och amortering.

Lär mer

Ma1C: 189-191, sidan {{{2}}}

Wikipedia skriver om Sammansatt_ränta

Exit ticket

Exit ticket: Index och ränta