Derivatan av logaritmfunktionen: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
Hakan (diskussion | bidrag) Ingen redigeringssammanfattning |
||
Rad 1: | Rad 1: | ||
[[Category:Matematik]] [[Category:Ma4]] [[Category:Samband och | [[Category:Matematik]] [[Category:Ma4]] [[Category:Samband och förändring]] [[Category:Derivator]] [[Category:Logaritmer]] | ||
{{flipped2| zGt8EiMXAJg |Derivatan av logaritmfunktionen, av Mattias Danielsson. CC By (på Youtube) --> }} | {{flipped2| zGt8EiMXAJg |Derivatan av logaritmfunktionen, av Mattias Danielsson. CC By (på Youtube) --> }} |
Versionen från 1 mars 2016 kl. 17.27
Bevis
- [math]\displaystyle{ y= ln x }[/math]
- är liktydigt med att
- [math]\displaystyle{ e^y = x }[/math]
- Derivera nu [math]\displaystyle{ e^y = x }[/math] på båda sidorna med avseende på x. I vänster led får vi en inre derivata och höger led blir = 1.
- [math]\displaystyle{ y' \cdot e^y = 1 }[/math]
- Stuva om i ekvationen så får vi:
- [math]\displaystyle{ y' = \frac{1}{e^y} }[/math]
- Men [math]\displaystyle{ e^y = x }[/math] så
- [math]\displaystyle{ y' = \frac{1}{x} }[/math]
- V.S.B.