|
|
Rad 20: |
Rad 20: |
|
| |
|
| == [[Fyra sätt att beskriva andragradaren]] == | | == [[Fyra sätt att beskriva andragradaren]] == |
|
| |
| == Parabelns ekvation ==
| |
| [[File:Parábola con foco y directriz.svg|thumb|Avståndet till styrlinjen är lika med avståndet till fokus]]
| |
|
| |
| '''Definitioner'''
| |
| Brännpunkt kallas också fokus
| |
|
| |
| Styrlinje är en linje som används för att konstruera parabeln
| |
| {{clear}}
| |
|
| |
| === GeoGebra som visar samma avstånd ===
| |
|
| |
| En punkt på andragradsfunktionens graf har samma avstånd till styrlinjen som till fokuspunkten. Testa genom att flytta punkten så får du se. Du kan även flytta fokuspunkten och styrlinjen.
| |
|
| |
| <html>
| |
| <head>
| |
| <title>GeoGebra Dynamisk arbetsbok</title>
| |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
| |
| <meta name="generator" content="GeoGebra" />
| |
| <style type="text/css"><!--body { font-family:Arial,Helvetica,sans-serif; margin-left:40px }--></style>
| |
| </head>
| |
| <body>
| |
| <table border="0" width="926">
| |
| <tr><td>
| |
| <p>
| |
| </p>
| |
|
| |
| <script type="text/javascript" language="javascript" src="
| |
| http://www.geogebra.org/web/4.2/web/web.nocache.js"></script><article class="geogebraweb" data-param-width="926" data-param-height="435"
| |
| data-param-showResetIcon="true" data-param-enableLabelDrags="true" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="false" enableLabelDrags="true" data-param-ggbbase64="UEsDBBQACAAIADRpskIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAA0abJCAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZ3W7bOhK+7nkKQte1zV/9FHYPnLMotkB6Wmy6i8XeURJjs5ElrUQ7TtHX2SfZF9shKdmynbiNc06BbepQJIcznPmGH0fO9NftqkAb1bS6KmcBGeMAqTKrcl0uZsHa3I7i4Ne3v0wXqlqotJHotmpW0swCPqbBfh30xpTZxTqfBamMQkJ5PorTJBzxJBSjOMExdIXIMY8ykeQBQttWvymr3+VKtbXM1E22VCt5XWXSOJ1LY+o3k8n9/f24tz6umsVksUjH2xYUwM7LdhZ0D29A3cGie+bEKcZk8s8P1179SJetkWWmAmS9Wuu3v7ya3usyr+7Rvc7NchYkNAzQUunFEtwUXARoYoVq8LVWmdEb1cLSQdf5bFZ14MRkaedf+SdU7NwJUK43OlfNLMAQK0IwEYTEUYIhQHGAqkar0nTCpDM66dVNN1rde732yZnkOIkAA93qtFCz4FYWLbily9sGQgo7atbQbc1DoVLZ9P39hshr+AEB/VVZXYCdjwPMYPzafiL4CIH9XoaGA2SqqnBaMfr2DVFMMXptG+IbCk0Y+insxzDzDfUN943wMtwv516UexnuZTg742TX33vZDRy42TvJHnMyhI/z/sjJeOAksU58Q8Tu3jUM2X0Tt3/b8K4b+m7kGoJ9Q7rJ2P5KbCd8oUfsIo/IwKpPhucY7U1GmP24SfoSkzsvKeGnJql4wstzwT0+E0+7ScQgsmDK/XefE4uMvuQUXmAw5D/bxQj/DBenk57lpt3RQ+3SynapY9SqtYzDEiTcOSJIwMEMI+AJgUgCTWQPKEVEIC6gS2IU2jZCzJ5JjhiKkZUjDDl6ETH84pFTFiIByuxo5E8uYhwJhohjJY6Ai5BjNmA5ykBCCCRgkTVPqFXBQsRD6LEYcdijJbXIEgeDhdAH8xQxgphdTCJEQxRafYRbsgxju3VQSVGIUehYA3gRONHzIcjHiFlvIMPrqtW76C5VUfdBcnHUZb02B7HLVnn/aKp6h6GTzqvs7moX625GydYMxeAq2t94/mo6uBBfTQuZqgLKhhubCAhtZGGPsLNwW5UG9UnA/diikfVSZ+2NMgZWteiL3MhradT2HUi3vW1n2t3TU7XOCp1rWf4DssSqsApRf207Xuqvbd5byaqqyW8eWkgdtP2XaipgkyQcs0TEmIeChHEMd+hDNyP4GNMI6CYSlFMWwzlrM2lzXuAx4wwnnGMaMstHD4/P0MQbVpudY3Kr2j74i8Yepy6stvO+vaqK/VBd6dL8JmuzblwFBiejsS7Ny0WhXGQd4lDLZHdptb3xIWVe1+eHWtklbgPp4reqqBrUWL+giFl0bepbJ2N3tpPCTgY7CdxjpPPdPEmok3Bt6lsnBaD7rXWekt5NgnszunU0AsqHSekyxlZG61Kb675jdHa399TK/75epZBs3bJDleQPUjmdHKXX9E41pSp8EpWA5Lpatz6rd5n5arpu1SdplvMy/5tawHn8JC0nGlDtRfc7zlWmV7DQj3ehkxbWv8NW/WiuFo3qPSxcyesD62bxMKVPhp2qd021el9uPkPOHG11Oun9mbZZo2ubmigFkr5T++zLdSuB4vPhOnC+BS8yyzYQSGODGCC5NsuqcVUtHFkIa4w+yC/AkJCL9qgWagXVLDIuI0GFznbYZK5OtiCgKv0CBHKE3SC6ML9PYswPEhTJol5KW0x3ASjkg2oOQuIUfqjy40ABDs4bYIXaZ0StlM8l0x0hVIM6dwIH29knugHmuoPKHBJIDBbZh7/qPFeOlz0P6IUqN+BlBSmBtthvGD3g7mXra/+wJbNg5J4eSCf0lfg5pwj23OgtmoP8CNuXr3kvNqf9yjnrh3j/IAYq1L9Lv/3WnwW1rQudadPlv8fsBD3r9Q4cWN/AwBf1HRD3eT/EcEgxRLALMCSPY4jHP46iOz8t2vZI9EBAiu22cQnQFwXX8f0uau+qu3X74sg6mv9TI0t+NLKsi+wuBZ2/9tbyRsVw9IjShkHLqtVKljkqXcH5yQVtX+hIbFnFx2Rt+pG5V9It/U7k5xdFvb9YCaZ/NCtdFnc+pvBP4DDEURzxiDoU6JjGNIKXpZBTAW/n/CwmyeOY0POY/EV336scwjKHiJA+sY8RkpvW/Pc/ZT7fTT8NV7leqWZwixytdV+RyGLdbZYfeSzOn5ghbuS8nzdqYcef5eZ5z9pO486zFxPAJWlIj1MJLpmIRFQkCROQSUkkEpdMo0dyzGYTHYdhGAmSxJSFlBNxhkrp86hUr/ZU6iJb2CPwvrRllnKFyWlhdqdUbevhj+XnRpat/drysCJ7GuKPDdQ2i6qUxbW9+h5FejuHAvQE6fQ80gc3aXoKc/+qfrYOeinQ+ARo0pE17sj6FOA/BcmnAdghexT7ffHhMEhP4n/1HMq/uuichb4KtU3qm5cj8Dhrj+h3Lk920eV5lsCuTkKaP4+88p9IXh9vb1tlbAAZ9xEj9Me47fR6GOb/iMRjHNMYU0CEhglO/o+obDJ8X3PfnXR/O3n7P1BLBwgoZTdZXwcAAOsZAABQSwECFAAUAAgACAA0abJCRczeXRoAAAAYAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIADRpskIoZTdZXwcAAOsZAAAMAAAAAAAAAAAAAAAAAF4AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAA9wcAAAAA"></article>
| |
|
| |
| <p>
| |
| </p>
| |
| <p><span style="font-size:small">18 Maj 2013, Skapat med <a href="http://www.geogebra.org/" target="_blank" >GeoGebra</a></span></p>
| |
| </td></tr>
| |
| </table><script type="text/javascript">
| |
| var ggbApplet = document.ggbApplet;
| |
| function ggbOnInit() {}
| |
|
| |
| </script>
| |
| </body>
| |
| </html>
| |
| Länk till filen på Geogebratube: http://www.geogebratube.org/material/show/id/39100
| |
|
| |
| === Parabelns egenskaper i GeoGebra 1 ===
| |
|
| |
| Du kan lära dig litet om hur parabeln fungerar och vad den har för egenskaper med denna övning:
| |
|
| |
| '''Datorövning:''' [http://www.malinc.se/math/functions/parabolasv.php Malin C GGB-övning] {{clear}}
| |
|
| |
| === GeoGebra med styrlinje och fokus ===
| |
|
| |
| {{:andragradsfunktion med styrlinje och fokus}}
| |
|
| |
| === Övning - hitta funktionen om du vet fokus och styrlinje ===
| |
|
| |
| [[Fil:Parabel_m_styrlinje_o_fokus.png|300px|right|Övningsuppgift: hitta funktionen]]
| |
|
| |
| Detta är en '''viktig uppgift'''. Se även Exemplet på sid 152 i Matematik 2C.
| |
|
| |
| Den här uppgiften utgår ifrån att du vet styrlinjen och fokuspunkten men ska ta fram funktionen. Se figuren till höger.
| |
|
| |
| # Börja med att markera '''en punkt (x,y)''' på grafen i första kvadranten.
| |
| # Skriv ett uttryck för avståndet '''från (x, y) till linjen'''.
| |
| # Skriv ett uttryck för avståndet '''från (x, y) fokus'''.
| |
| # Det gäller för en parabel att avståndet från (x, y) till fokus är samma som avståndet från (x, y) till linjen. Visa detta genom att sätta de två '''uttrycken lika'''.
| |
| # '''Lös ut y''' ur ekvationen ovan. Det gör du genom att kvadrera båda sidorna så att roten går bort. Du behöver utveckla kvadraterna med hjälp av kvadreringsregeln.
| |
|
| |
| Nu är du klar. Ekvationen du fick beskriver parabeln.
| |
|
| |
|
| == [[Andragradsfunktionens graf]] == | | == [[Andragradsfunktionens graf]] == |