Gränsvärden: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Rad 20: Rad 20:


Plats för figur
Plats för figur
<pdf>MM.pdf</pdf>


Alltså
Alltså


{{defruta|Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b
{{defruta|Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b }}                                                          
 
                           
Ett slutet intervall [a,b] består av alla tal x mellan a och b samt a och b ; a≤x≤b}}
{{uppgruta|Rita tallinjer i och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1<P>Du kan rita på eget papper eller trycka ut detta papper [[Fil:Mmpaper.pdf]]. Eller så kan du rita i GeoGebra}}                                            
 
{{uppgruta|Rita tallinjer i figuren nedan och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1}}
 
 
Plats för ppaper
 





Versionen från 2 september 2012 kl. 14.12

Lars Adiels är lärare på Norra Real och har skapat sidor om gränsvärden



Här kommer text om gränsvärden.

Upplägget.

Motivering.

Omgivningar.

Intervall

Om vi tänker oss alla tal mellan två tal a och b så kallas det ett intervall. Det finns intervall av tre typer. Öppna intervall, slutna intervall och halvöppna intervall (se figurer).

Plats för figur The last editor of this page did not have the right to Embed PDFs into pages.

Alltså

Definition
Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b


Uppgift
Rita tallinjer i och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1

Du kan rita på eget papper eller trycka ut detta papper Fil:Mmpaper.pdf. Eller så kan du rita i GeoGebra


Uppgift
lägg också in intervallet på en ytterligare tallinje
[math]\displaystyle{ \pi\leq x }[/math].

Tänk! Detta är ett halvöppet intervall som man också kan skriva ::[math]\displaystyle{ \pi\leq\ x\lt \infty }[/math]



Inre punkt i ett intervall

Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.

plats för figur

Definition
En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.


Tänk! Bara punkter A som uppfyller [math]\displaystyle{ a\lt A\lt b }[/math] är inre punkter till intervallet [math]\displaystyle{ a\leq A\leq b }[/math]



Uppgift
Vilket eller vilka av talen [math]\displaystyle{ 1 ; 1.414 ; \sqrt{2} ; 3 ; \pi }[/math] är inre punkter till intervallen
  1. [math]\displaystyle{ ] 1.414 , \pi ] }[/math]
  2. [math]\displaystyle{ [ \sqrt{2} , \sqrt{10} ] }[/math]


Omgivning

Definition
Om en punkt A är inre punkt till ett öppet intervall U kallas U en omgivning till A

Ofta kommer vi att använda symmetriska omgivningar till en punkt som [math]\displaystyle{ A-\epsilon\lt A\lt A+\epsilon }[/math]

där [math]\displaystyle{ \epsilon }[/math] är ett godtyckligt positivt tal > 0 (ofta litet) tal. Det kan också skrivas [math]\displaystyle{ ]A-\epsilon, A+\epsilon[ }[/math].


Uppgift
Uppgifter på omgivningar



Punkterade omgivningar

Ibland undantar man A från själva omgivningen till A då kallas det en punkterad.

Definition
De sammanslagna intervallen [math]\displaystyle{ P_-= \rm{A-a\lt x\lt A} }[/math] och [math]\displaystyle{ P_+=\rm{A\lt x\lt A+b} }[/math] kallas en punkterad omgivning P till A

Det kan också skrivas så här: P är alla x som uppfyller [math]\displaystyle{ ]a,A[ och ]A,b[ }[/math] där a<A och b>A


Tänk! Observera intervallen ovan är öppna

plats för figur

Uppgift
uppgifter punkterade omgivningar


Vänster och höger omgivningar

Oegentliga gränsvärden

Gränsvärden.

Alternativa definitioner.

Facit till vissa uppgifter