Gränsvärden

Från Wikiskola
Hoppa till navigering Hoppa till sök

Introduktionsföreläsning i två grupper

Vad händer med uttrycket när x närmar sig 4?

Lösning i WolframAlpha: http://www.wolframalpha.com/input/?i=lim+x-%3E4+f%28x%29+%3D+%28x%5E%280.5%29+-+2%29+%2F+%28x²+-+5x+%2B+4%29

Lösning i tabell-GGB

<ggb_applet width="959" height="351" version="4.2" ggbBase64="UEsDBBQACAAIABWxNUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIABWxNUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vptc9s2Ev6c/gqMPty0PVvCO8mcnE4kN5d20k4mznVu7sPNUCIssaZIlgQt+aY/vguAFClRdaTmrLtJqokNAlhg91k8uwsqHn+zWSXoXhVlnKVXAzLEA6TSeRbF6eJqUOnbS3/wzYsvxguVLdSsCNFtVqxCfTXgQzpo10FvSDyzOI6uBr5Us8if4UsvIuSSS04vfUrFJcMkUFLicM7lAKFNGT9Psx/DlSrzcK5u5ku1Ct9k81DbPZda589Ho/V6PWy0D7NiMVosZsNNGQ0QWJ6WV4P64Tlst7Nozaw4xZiM/vnDG7f9ZZyWOkznaoAMqip+8cWz8TpOo2yN1nGkl1eDwAMYSxUvlgYmFQM0MkI5YM3VXMf3qoSlna7FrFf5wIqFqZl/5p5QsoUzQFF8H0equBrgIfcwwQwH1POZwIKAkqyIVaprYVIrHTXbje9jtXb7mier0hxAXMazRF0NbsOkBExxeluAP7f9Uj8kahYW24HWHnbBYD7+DwiDiwbIOQFUY3xhfqjAF9xMjHa1+gOksyyxm4IcQb8iaKhrGEK/2gfh+rzuStf1bEOwa0g96ZtfgenIj0REGkTsECKJDyPiOPAeUayLakev67dqSauWd9UyD9T6/MIDtUL01ZKOTrfnCVhblQE/AWnn7DAS1ucUU4wuTENcQ6GR0k1hNwbnahvqGu4a4WS4W86dKHcy3Mlw9jEgtwTlQh4PkpzEot5pbilEOmcJsWD/2Z+eRnZSJP6uRiKO1ij5xxD2Dyg0OfHpFY5HTZob1zxF5dLI1tTRalUa5rLAkhcRJICh0gOuCUQCaDyTiCgiAnEBXeIjaVoPMZN7OGLIR0aOMGQpKnz4xW1ekkjAXmbQcwkKMY4EQ8QSmyOgM7LBAYFCGUgIgQQsMtqJUcsk4hI6zEccDDRh4Zn0yGAd9EE5RYwgZtYSD1GJJEWeCS3CTcRJ39gOm1IkMZJmKcQWxJWLKVjhI2bQAMHzrIy3zl2qJN+eivVjnOaVrn1Xj89XUeNHne2JR9n8brLnbBWWunkGIShFbcVzpWmnID4bJ+FMJXBtuDE8QOg+TEwE2/1vs1SjhgPUjS2KMF/G8/JGaQ2rSvRzeB++CbXavALpsjHQqrZ1eqyqeRJHcZj+BCQxW5gNUVO2bSJsyjZjxGmZZ1kR3TyUwBy0+ZcqMmNAMAy6H/DgQz3lwQWo+wmAufMwsXl2dxFUjId6SuDdRTVodb+FFm5U2fhyUZh4qr1vOt+Vkyxph/IsTvU0zHVV2DsYJMHCgHqZLhJlfWvPHG4z87tZtrlxTmVur/cPOfSwM2C2mGZJViCISCrghrGo25lrrYyxbCuFrQy2Erg5pTjazpOAWgnbzlxrpeDYnWk1UtLAJLhRE5c2j8DmXZJZzpi7UZXG+k3T0fH8rkVq5H+sVjOgW71sd0vyX9pyPNoj2LjMCxVG5VIpfZhypiz1KAeLbqcqSW66ot07Ja0FO9uDi6tV2nioXuOzx+RIK8cfk6NbObhy9QTfZetG69Y8WUupxER3liK0vJkXWZJYsfvO89yqcRy1pbmmQ/iQVSbgwc2v4H2hSsJJp8Cb4b9betSFA/qv3a6TtnyY0Z8Ojk5AV6mKt3A1TnY2dahfAza1swBAukHUjIZJkq1vIHvFYfJtFOustc5OvYfq8z7Ot0Grfqlg9h00caHaWA0rnU2zVZ4orXYSVo854ztVgLkuJaWQFaqsKl2O3C57Nq5K9TbUy5dp9E4twPNvQ1NgNdDUibbsj8D0FSx04zUBQpMi/gG0d6ORWhSqiZbEvkC5ILWzuJsge8N2q1dFtvouvX8P+WfP1PGowTMu50WcmzSHZlDx7zreieIyhPtC1F0H4EtA4XilY20C0vpxaY4A1oTGk1Bhvw/TKixiKLqQ20zy34BLS/O26SIcjvIlhAAMm4cvN1+hK7SxKoC2K3iTQtrmwtsqtcq2iQFWWXYDL1A2+xkovpc5OucB87+THIEm+TI0r3J4y3ngV9eFdrsfsmjfsXBuFj3UpNxlo1wpF9C6Tt8oh+1s9u8YE1abOInD4mGfC2321VBQ7+CFsbRhv93NPLyOo0ildYhCqnNOOuzYSePYSePYf3+Jh+IrdInoMS6e/OniD7l42rh42rqYGgcL9DXaoL8ifoyjp386etfRO+5Kq5Uq4nkb+dR6CzRWNQ42DOpa1/Vg8x7qVrW2HeNBcqQHyRN58ARvsAPe+IzdwQ+545P2x15WgrxNm4JKOwkf9RPRvvMmvci6hGRCBRE+ZZz40of3dO6f7Kc/hoI1KNiJKHoRYVAADEyE5HDZJz4lmJ0LBm9g8BNh9Jh8SYcCGxBUBoIxD3P27SU/D4xpl1PbCveS2hJ3BJrpIWrRYO8t/TxQusRqobCjoRzkFw06YAjzzoSly64WCz8aS59kNlaCDhpf0icB83geF/uG8WbvzySLT0VztKJ7tOLoo+15EA8Z7n735T8NSR8/V9k/V/xJH+zj7vAOuOPT9ke/QnaJflKFPMBwTLkPJd5jhBEpfP40qauPQTYY5IkYevFg8y8PfM4CDuXe86U8EwavweCdiKFHYjrkgUHgmYsKxoLy811UuifRpk15dNo8dCAMk+49BZ8LS/dEWize0Vh6B2PIBQeyRUMIJ2ei13XzVclffqky/bdK6+Jhfqe06x74mkSrjR50Vn8gJT7ldyQfQNbcjScUjdD0qJi57t2HwSRfeoIKSFye7wWMsTMdTHMfnjBjPjvK/N4d2JjPpORMMniAIJFnugJfN1fgCTfmHxUY171rrzUf7GeM4IB7geed6f3wuql+E2HMF0eZf6jw+fBq7jFGpU8h7fJzkadJtxNpzJdHmX8oxRrOcMmoH9DAk/RMGfa6ybATz5jvHWX+oawK5IHMKnxfcukT/3/wxjQl5LBdO5/P62ZJdmuOSpHOklutIpUcV3Ym5P+m7oy6/+dm/5qi/mvKF78BUEsHCACfJA2yCAAA/SkAAFBLAQIUABQACAAIABWxNULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAFbE1QgCfJA2yCAAA/SkAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABJCQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />

Grafen

<ggb_applet width="730" height="323" version="4.2" ggbBase64="UEsDBBQACAAIAIewNUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAIewNUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdtb9s2EP6c/oqDPjVbbYukJNuF3SItULRDWhRLNwz7MICSaJuNLAkiZTtFf/zuSMlvabe12eZEPpG8d949pGfPd+sCNqoxuirnARuGAagyq3JdLudBaxeDSfD82aPZUlVLlTYSFlWzlnYeREMeHORwNGRjEtb5POCcK8FZOuDRVAwiKdVgwmU6EEm2mKYZS8MJCwB2Rj8tq3dyrUwtM3WTrdRaXleZtE7nytr66Wi03W6HvfVh1SxHy2U63Jk8APS8NPOge3mK6k6EtsKx8zBko9/eXnv1A10aK8tMBUBRtfrZo4vZVpd5tYWtzu1qHowjdG6l9HJFYQoMc0RMNcZaq8zqjTIoejR0Mdt1HTg2WdL6hX+DYh9OALne6Fw18yAc8mQ6DeNYiDARER9PAqgarUrb8bLO5qjXNttotfVq6c1ZjMLpGLdAG50Wah4sZGEwKl0uGswoOtS0ODT2rlCpbPrxwR/2BP+QQX9SpAu3zqcBV8LwCT1jfOI49L4cGw7AVlXhtIYQT+HzZ+AhD+EJEeYJR5Ikfin0c6HwhHsSeRJ7nsiLR5418jyR54nEX8TZjQ+BdhMnkfZxii/FmeDjEnAW5+QoTkZBfAZG3jsigPxmzn8iUTdM/HDsCAs9Yd3ihL5cvpIHRiS+KyJ2ZNXXw7cY7U3GnP1zk/whJvdR8i9FyeOvRPnA5PZGWXxkFG25f/fcMyn4t5i814rfYTGJHtL732FwHP4fBmejHulmXe+BWRFvVztWrQ2hjpg64AEGMTZmMkaciIFNkYypQTmwGKIYh2wCCdExCOrJCARMgPiYAAcv8QS/ItevCcSoiybHvnFBRBALYA6UIkAoAgdsCHJcIEccQ4xCZJ2RWZFAlOBATCBCBwnSxgQbAuVwjMY5CAaCZNkYeAIJhzHBIosILZMJ+Y5KOSQhJCSKuIiY6PEQJSYgKBqs8Loyep/clSrq/a64POqybu1J7rJ13r/a6ow7r7LbF2e5VtLY/h2Z8DA6HHn+cDo5ES9mhUxVgfeGGyoDgI0sqIOd/kVVWuhLgPu5ZSPrlc7MjbIWpQx8lBt5La3avUJu0zvoTLuDeqbarNC5luWvWCOkghRCf247WOrPbRF2lrOqavKbO4OFA7vfVVMRfkTD6ckngLtuSSTD8PhDCJRJKvloeiqEZ+/dV5Ym3rTa7EOTO2X6XC4baqcu+zR4Y15UxWGqrnRpX8rato27hKELDQV1VS4L5XLrthyvM9ltWu1ufFKF1/XhrsZR6B1Ily+romoAG5LHMTJ0NPXU8ZBne67Q8YSOI+x3Sef7dTbljsPR1FPHhdvuXesiZX2YLOzNaONgBJUfF5mrGboctaW21/3A6uz2ECnxv2vXKZZbJ3aqkv1LKmejswKb3aqmVIUvoxJ3sq1a4+t6X5sXs9ao99Kursr8Z7XEhnwvCRMtqvasB49zlek1Cvr5LnWStvUXdNXP5mrZqD7Cwt16fWLdanhc1PemnapXTbV+U24+YM2cuTob9fHMTNbomkoTUgTpW3WovlwbiRCfH8th8AajyAhuMJGWkhiAbO2qatzFFpsW42Hwkyxb2WjESaxHathd3ShDPxH8rgBqRWDZEfo83l3CHB7v/ngcDuNLGAC/hJEbcxrF8APs4EeILp0LqlBrvB+DdfW9aEvnzH6zF+7uTbsKVfoRMemsGI62C9e/Uu8gi3ol6Xre5bOQd6o5ybBT97bKz/OO2+qSgzBT+wKrlfKlabuOhBrVuYY+cubQNxah8BYv+8ZdmfZC9PJa57lyOO+L1KfC7ct6LcscSncGvyfcCA7YL0PKi4+5tf3MlVfSid7LrAOffdqu/iath9I+zirjHmsc7bDmv8wt+3JuXZMY2HmjcDcPBlhpAXzyP3P9jzoKlxD05LTys2ftdZz40XFHuPOp+4H67E9QSwcIifESE6UFAABQDwAAUEsBAhQAFAAIAAgAh7A1QtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACHsDVCifESE6UFAABQDwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADwGAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />


Lars Adiels är lärare på Norra Real och har skapat sidor om gränsvärden



Här kommer text om gränsvärden.

Upplägget.

Motivering.

Omgivningar.

Intervall

Om vi tänker oss alla tal mellan två tal a och b så kallas det ett intervall. Det finns intervall av tre typer. Öppna intervall, slutna intervall och halvöppna intervall (se figurer). Här gör man så att man ritar öppna cirklar när punkten inte ingår i intervallet och fyllda cirklar när det ingår. Intervallet [math]\displaystyle{ ]1 ,4[ }[/math] är alltså ett öppet intervall dvs 1<x<4. Det indikeras av att hakparenteserna inte sluter om.

På samma sätt är [math]\displaystyle{ [0.5 , 5] }[/math] slutet.[math]\displaystyle{ ( 0.5\le x\le5 ) }[/math] och de två sista intervallen halvöppna.

Alltså

Definition
Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b


Facit: (klicka expandera till höger)

Uppgift

Uppgift
lägg också in intervallet nedan på en ytterligare tallinje
[math]\displaystyle{ \pi\leq x }[/math].

Tänk! Detta är ett halvöppet intervall som man också kan skriva ::[math]\displaystyle{ \pi\leq\ x\lt \infty }[/math]


Oändlikhetsymbolen [math]\displaystyle{ \infty }[/math] kommer att förklaras mer senare.

Inre punkt i ett intervall

Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.

plats för figur

Definition
En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.


Tänk! Bara punkter A som uppfyller [math]\displaystyle{ a\lt A\lt b }[/math] är inre punkter till intervallet [math]\displaystyle{ a\leq A\leq b }[/math]



Uppgift
Vilket eller vilka av talen [math]\displaystyle{ 1 ; 1.414 ; \sqrt{2} ; 3 ; \pi }[/math] är inre punkter till intervallen
  1. [math]\displaystyle{ ] 1.414 , \pi ] }[/math]
  2. [math]\displaystyle{ [ \sqrt{2} , \sqrt{10} ] }[/math]

Facit: (klicka expandera till höger)

Uppgift
1 [math]\displaystyle{ \sqrt{2}, 3 }[/math] därför att 1.414 ingår inte (öppet) och [math]\displaystyle{ \pi }[/math] är inte inre punkt! det är endast en (kant)punkt ett slutet intervall
2 3 och [math]\displaystyle{ \pi }[/math]

Omgivning

Definition
Om en punkt A är inre punkt till ett öppet intervall U kallas U en omgivning till A

Ofta kommer vi att använda symmetriska omgivningar till en punkt som [math]\displaystyle{ A-\epsilon\lt A\lt A+\epsilon }[/math]

där [math]\displaystyle{ \epsilon }[/math] är ett godtyckligt positivt tal > 0 (ofta litet) tal. Det kan också skrivas [math]\displaystyle{ ]A-\epsilon, A+\epsilon[ }[/math].


Uppgift
Uppgifter på omgivningar



Punkterade omgivningar

Ibland undantar man A från själva omgivningen till A då kallas det en punkterad.

Definition
De sammanslagna intervallen [math]\displaystyle{ P_-= \rm{A-a\lt x\lt A} }[/math] och [math]\displaystyle{ P_+=\rm{A\lt x\lt A+b} }[/math] kallas en punkterad omgivning P till A

Det kan också skrivas så här: P är alla x som uppfyller [math]\displaystyle{ ]a,A[ och ]A,b[ }[/math] där a<A och b>A


Tänk! Observera intervallen ovan är öppna

plats för figur

Uppgift
uppgifter punkterade omgivningar


Vänster och höger omgivningar

Oegentliga gränsvärden

Gränsvärden.

Alternativa definitioner.

Facit till vissa uppgifter

GeoGebra

Tangent och sekant

<ggb_applet width="1368" height="621" version="4.0" ggbBase64="UEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHiBx34iVBORw0KGgoAAAANSUhEUgAAAMgAAABmCAYAAACOTt4AAAAHqUlEQVR42u2dsWsUWRzHF0mZxs5SUoQlZUA0bIpoEUihf0EqsfDAIoKFhYEUgilCkJDCwiKFhYUcsgbWQkgghUWQQAznHuHOvQjnkhThLnd4ukt+53cnL85OZndmd9/Mvvfm+4Fhk/h23Lczn3m/33tv3uQkAY6Pj6VUKjVeCbGZXBI73dvbk+3t7cYrIRQkhJ2dHX67hIJQEEJBKAihIBSEEApCSJqC5HK5xqbI5/MUhFCQoCBqq1QqFIRQkFYUCgUKQigIcxBCQSgIoSAUhBAKQhrMzc3J6uqqbG29O/3bwsJCo4Pl4OCg8fvw8HDzSXLSS+nvjPH/DtR7KQgFsZrl5eXG67ev/zUJMDIyIkNDQ02CbG5uNgly5coVOXfuXKgg6r0UhIJYzW+7v8rB/p9y9NchvwwKQkifBQmOpM/OzlIQgymXy7K+vi6fPn3il5GmIGqrVquNg0BBzGRxcbFxfCoffw9NvINJuT8Bz2Kyrj3EmpycZAtiMMWXP0vt21f595+/zwgRTMoHBgaaEvAsJuvaBSkWixTEEUZHRxli6d5hvV6nIISCREFBCAWhIISCUBBCQSgIIRSEkJQFCQ4yDQ4OUhBCQYKC+LdarUZBCAVhiEUoCAUhFISCEEJBCKEghFAQQigIIRSEEApCCAVpmnZCQeLz+bPIxobI8+dYtwqLu4k8eCAyM+P9fP++yL173s8LCyIrKyJrayK7uyK1Gr8/6wTBRkHC2dryJMBJDwmw4ffXr0XevxeJWmwEayJADAjy9OmPfWB/kAd/Pzri98wQyxI+fhR58uSHEC9eREvQLYeHnmgPH3r/H17fvuUxoCCGgSv8/LwXFkGOfi1BhZYEQio5EcYRCtK3kxEhj5LCtOWhvnwRefnS+3xoWbhuHAVJrbVA8owNOYQNQN7Hjz1ZkLMQCpJIso0TDAm2rUkxesDQqty5472yR4yC9Azi+Fu3vK5Wl04otCQu1ouCpNxiuH4CQRSMv6BFIRQkEgziqcQ7S1fWN288UU6W66UgvTA2Nnb68/j4uBOCQAYMvKHH5zCjz5rBd4CeOXQTO/qEtXQEuXz5srezXE5KpZL1giDMQOL64QNDDIALBCSBLBQkwyEWTgSEU8+eUYowEG7dvp2tCwcFOUGNOGc1lOgk7MIYCmYKZCEny7wgqtVYXeXJ3wloRdCa2DI4SkG6QPXUsNXovjVBRwZaFArikCA4sJgawlxDb26CLnEKYrkgmDuFg4lXog9Mt0Goiun2FMRSQZCIY9o3p1IkB2YaYOzIle84E4LgYEEMTp9IByTuyO1cCLmcFwQHiSFVf0IuSGL7HY3ap5rk83ljBMHBwUHiPdr9Az1cCLsyLYh/qkmlUjFCEPRQYTCL9B90p2MQ1sa8RHuIVSgUtAiyErjs3Lx5UyYmJpr+fSXk0qTyDdd6U2xH9R7aNuZkbA4yNTUl09PTp79DDv/f8DO2YNzLSYZm5yW2HR9jBUHroGSAHNj8fwu2IFhex9XBKpdAC49wC2EXBUkJjORikIrjG/aAG9BsSN6tF+TSpSm5cWOJZ5yFYFzK9I4UqwXBDTzXrt3+HtuyH9dW0BVvcutvrSC48nCKuhughwvJu4nXOesEUd24XEbTLdC5AklM62TRPpI+OzubmCBq+gK7cd1EdQObNC1I+0h6tVqVcrmsXRB8eVjYjN24boMIwaSxEu0h1uTkpPYWxNTmlyQnCW5oMyGM1i5IsVjUKgikQMvBjqrsAUn6vbi2dkHq9bo2QdDMouXgAGB2weLguNHNGUEUvQpCOYgJkhgpCGJPl27bJL2DUXeIknlBIAfGOQgJglYkbUmMEoRyENMkMUYQTH92eQEyog9cSNOa5GiEIP1oOon9kqQRbWifajI4ONiRIJSDmCyJ9qkm2Gq1WixBKAcxXZK+hViUg9ggSV8EoRzEFklSF4RykCQlwQCztYJQDpI0mKKksws4NUEoB7FRklQEwTwarqxObJREuyBqTEQJkpYcw8PDPCuIdkm0C6LGRCBImi0HBSE6Jdnb25Pj42PJ7e/vf8/+NxondJwtbtmZmTVZWvpD6z7Dyl24cKFxm6/OffZSLsv7NLU+r17tyt271Y72ub29LaVSyWtBIElc4pRFq/Ho0S9a99mqHJ5HgoUidO6zl3JZ3qfJ9fG3JHH2edqCYGpI2LI9Z2KxQDk15ypMDmz+JN3/vlY5S7t9Bsu1+oxhZdUDfaLKjY+Pt49FT6bRdFKmVX2C5drVJ1i2VX2C5aLqE/V9h5WJKu//93Z18pdrd3z85eLU5+LFi5Hh1vnz8x3VP+fPG/zL9rTLL/xzrsLkCPZiqfd1s8+wcu0+Y7CseqBPVDk0p3FO/naS+Mu0q0+wTLv6BMu2qk+wXFR91HtqEbdtqjJRxydYNqpOqly74+MvF6c+169fjyxz9epPjZYkTn1Ck3S1bE+nBBPyJJce7eQzqgf6mIxr9emkTv2oTyeJ+xlB1LI9vciRtCDdfEaTca0+NtQJksR5LNwZQdSyPb3IkbQgnX5G03GtPrbUKc7KOT2Ng+AhKK3GOUx6Tjoh3UrStSBRaxVREOKCJLkk5KAgxBVJcknIQUGIK5LkkpCDghBXJPkfc7+2AYbjfKYAAAAASUVORK5CYIJQSwcIPWWxB+cHAADiBwAAUEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVlrb9s4Fv3c+RWEBli0QGyLb6njdJAUGGyBzANIdzHYLwtaom1NZEkr0Y49mB+/l6Rsy49k7MQtCiShJF7y8p5zX1KGPy5nOVrousnK4jrA/TBAukjKNCsm18HcjHtR8OOH74YTXU70qFZoXNYzZa4DZiWz9DqQWsWSRrpHaSJ7jOu4F2kW9gRhNIxliKWOAoSWTfa+KH9RM91UKtH3yVTP1F2ZKOMUT42p3g8Gj4+P/bWqfllPBpPJqL9s0gDBMYvmOmgv3sN2O4seqRMnYYgHv/9857fvZUVjVJHoAFkT5tmH794MH7MiLR/RY5aaKRhMBZxuqrPJFIySkgZoYKUqQKTSickWuoG1nVtntJlVgRNThZ1/469QvrEnQGm2yFJdXwdhH9MIcxnFTII2RjAJUFlnujCtMG6VDtbbDReZfvT72iunkgXIlGU+UnZL9NdfiIQkRFd2wH4gMAjhp0L/LKR+IH5gfuBehvnlzIsyL8O8DAMgFlmTjXJ9HYxV3gCGWTGugb/NfWNWuXbnaR9szcdXYFOT/QnCNARH8aDD8zC8sr8CfpmdGOwaiTtaTT0/U+laJcZCnq6TvEYn3eiM4kOVhD9hpngGXX+Gk+zkHWhBlftxvwcaKTlDo79/nULBvoqJw8E6VIZtdKBmamVbJo2eNTZeaIx4bN0eIw6xISR4OUc4hkESBNGAMEeMwy2OkLCjRFTCBEMURcjKYYpccPAI/jDpNhOIw2b2qYSYRBgUMcQpwi6mGIJIQi4uIUYJBQnOEYdFVj0mdgsqEBNwRyPE4Iw2JCUGQQoL4R7UE0QxonYxlogIJOx+mNlQF5E9OmxJkAiRwHZDiGqIaB/NIB8haq0RLVxZUc3NDkTJLF1fmrLacAHSkI+2ac/np52s+GaYq5HOoVLcWyYRWqjcRoRTNC4Lg1oSSeifTWpVTbOkudfGwKoG/aEW6k4ZvfwJpJu1bieblEXzW12aj2U+nxUNQkmZh5szlznuXJPNqeGGdiZYd4J3JkTnWh7VW8IMmjca9Jd1sxZXafrJSmxTAyD5a5GvbmutHqoy2zVjOHBFZ6jnSZ6lmSr+Dc5qtVhc0KYGuXS1rkE8luuTlHV6v2rAhdHyP7oubbUifS4oCSmnJCLCVpKVn+Ik7kseEhrFHEuXv5tE5S4Bsz4PYxxFUopIMA6+sDo+J7xmvdgwpJZ6Y/yktoHdGm5vPjW3Zb595Mz/qCozr133AEeorU03xSTXzkVcYENpTh5G5fLeBzj1e31eVXDXOspo4mBHkBoI5yDQjiM/Ohl7so1U6GRCJ7FxtizdzOOYOAk3jvzopMB7/dFaS/HaTByu1WSNS2hhsBM2zvVtnZ8Xmblb35gsedhaauV/mc9GeuNAu1viC205HOw52PBB14XOW38GJuflvPHh2XH1VCfZDG79RAuIsmT9Cw7gn6Z6Uuv1uXPXl3m43GzY9dSDx26rn+py9qlYfAZP2DvAcLA+5bBJ6qyyDodGUAMe9Nan0qxRUELS7jobgGB6YksFwGNc4QZl0FABu2pupmXtOjDILDC6pq+sH5qp1uazXhqkRuUCZv7xPQ5/cH/AJ3RuiXD762VV68Y2xJ4SBMqhK17a5Ph2+Q5dQ1or4MIL53oGipFx/jueF+5YGzLHTr1lDZWjPyB17pHdoQPmj/qz83yVV1Nle8kW21ytdL2Dttvw5zLd5wAodkBBHqlcMwpOVGnt3c+0UYcq2NAFbedA29gwkLUfoDUFnxOdRfbin1maalexvSN6OBxLs5kqUlS4iv+bzQ3BtgIpyOXLGwiE1va5WT9N/Ebt8gOEXZLZwJf8DbzboHsK3fALY4uPY+tCpkFLu4rFMmaEhTimDEeSQ+e08sdBf/pXMv9KYi23SXOnzvqne7F3CR7MOTyYk3mA4E0zD5otna3w5CmScEi+DZpwn/AYxwIzxiISYhZ9QZbuIPL2SEoAAOh5Vke5Us9zZQN5Q4U6pGrdfp+ckl7BxhbRnvvY0MHwWCQ8nYjIc4kIepj/FX5J42tnNqvyLMnM2cCb54AfnQH86JsF/ohvf2XcPxUGOhrAZA/8sQdfwQBN/tsjHnKF4CE0r9DCYmiJCROSiHcHRN2ck81uXlRV7BvvxA8jP5xI1a/jcaONY8Z+fwJievwok/T02nEAyYuzFOiDlt6mT/fsbXI1fpu8e/cqPkctn4eOZ+mEF5iIMbilMQ8jGR+yeXsOm7eXr02XoJq3VGN6GtdPFqB9uC7GtAGmzUuZVp7p473Fx3P4+/iyFvrFHD2TOZ+Kt95XawNuPKy3B5CmZ1Si9HREz23XrFdfrE7ZNMYI4TSKOKQwEorW5SG3wVOY40xGRBKHPYhjIhknWMaSRJTE5Lk6xr5EHfvsX0OPkzY+IE2fQZp+LWnTQ9LWH1cu2VyE/UhGXEgsIs7CmEnsSMNthNhQgfBhJBZC8EiIOL4cSfCOfgJJ93lZ7cdVesDN7HluivlM11mygX/mNgRM5mtk+oKQmFNsa3AkaNw2sxctRC7egECODxjEJzJ48CHs1F7vPID1IcD/xWdCDAsOQD5wtleCfCRKvhWQd9EZlWWu1fZL02Qfm05C+DofSLbNjSS+uZHk2aTR7TbudaLANlfyzrJ7+g3ajcPns2XX8LZkHLV80P3U6f6d0P5v/MP/AVBLBwgkotXC0gcAALgfAABQSwECFAAUAAgACAArrSxBPWWxB+cHAADiBwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIACutLEHWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACsIAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAK60sQSSi1cLSBwAAuB8AAAwAAAAAAAAAAAAAAAAAiAgAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAACUEAAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />

Övning gränsvärden

<ggb_applet width="1368" height="621" version="4.0" ggbBase64="UEsDBBQACAAIAKqmQUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ01VeziU2xoffLPnQ/hmmAgzPoPttkWo9pD4zHhmhl3uU6abbJV4UiGkqWO+wqDaoo1tjFvtkCjNOGnc2h23yiWXstnobEIRdu6X6Hzs5znnrGet9a53/d71/t5n/fF7Ez32s1SUtJVwOJwKh830wmwztsLBb7B9wHefCQ5HcOcwEZ/ovklxnZvOWd2mWccly+4XdIrGXaXUdU2KSnc+w5SiFBmUzEjI89K1k/LthRFBO+JUnYE4VQqt1T8/IH6r9jn2s/w8/ix/te3ilTuDI00DRov9AxN4VkDSrqjF6qlZfk4uPe14cEXWaVtt8aJ7rnaszvvH/BkCgZAxTQQgAMEh0H9NPQnJcbAZ/ZItLwcOmTaLdjd2T2iAThAgB2zjpqjpXS/mmkKxcA7qY9YmFwtT0U+T2yQShgAHfNZgLifMQDjgRSa8OO39mmh4Fx5X4Bw6ld92+ser6xRAsbmvL8t0a/K9gdCoK/tFcHuuzuxa1Y5fSXgKIm/l4LC2+HHl6/DOfeiX9TMtd1iN1dHHWz6aboCP6ur+MTImBWn0nD35wXEwcRQ+TQToUGAgWuSvT4DZSgZgGNzs9KCsbGX9j5WVGDM8ogpsy+x0EZ3cPpbN25s7XW2Z8UrcI5FIfBRRXZCkGOf8p2taWaZYvDM5OfkerzQrpiY0PaNktMt4rGbVT9JbzVdZHVwT2Zn97PphUc9xSp+AMhklb2Sfe58/R+l2drIvdA5jkExPTx9vFsDDbp1p1gU9pVwK5Y3pb6D1XiTVyr/cfqzISoBHGk2bcx0bHzwwNNZ/aMPSwnzhowqjVyUVSkgBQ401kjv9zt68v0j3Q8wpXkpxcTETHOq57UY2rwRForaaqb2GrNLIeTt15DvNuwccCcR6vSOW5EhyzBHHRQ8yr/TnhASfcnnFgK7oB1fEseDQUULh65K/qnwNfNOqafJ0NhuJOE6OP5PB8LH5535PyUfbhpD6lLIb5ld51LorlNbLjJSQolC7oKUb3qqFz2y9L52NUJOpn6Rou8wtS3YYGw+vUsEwFYfElydWR9jJcMz4RFbIVLUOcW5lSpz2Q5ODFw7Z8zz6cHhlAiU6U6rL7OGqnJXVlm15qTPntLLc1TZ9HabWd6SSA33KWonMY/v+FXm0NqJsbLip7dLl9LvPEuCtICmiWWaBBnmCRu0kJ9qHwxpGc36dmtedUjLxija5BjfN0msLwxSeGHFYJAMF9BrE3H0M33OS3khG3vtHnRJRqePhWk3zCOSG38Zy42rYyN3ZyrRwPVb7PfE38tB8SKHEogQWuiOeq1WtYVsONazMv7K/xbX9MHWZ68hIqjoAGSoh9UXx2Ux6QvUxoENj+MaNG6+KG6f4mk98OYnSAiMJiVi/+j78qc5sN+uXIlbNM2dHZGrA/Bf7qPHRqQGvMX73Ns1FEzmAwwE83zDmzx8a0bqbNL8wWfz08qWG7MffW6JMC+FLHx+JMqvC1j0tUA4ZIjGLckJLdEEULlcuMNzV0tzhaTneyIeARF9IJU/Z7tx5XXMqCYEMuQjKlTRW6JqgMPsTGpTZYFXqN3zYPMNsK1q/Xai0kieOHz7KztpMROvvPbPrBQIgUAjgmX+M99hN9VaFiw5U74Vc++azqV65iyoNRA8aCT2SuYt7hJW7H+qjsNAXDVpKvM8jPY8XizEReICVNvvooPTHP2zuHwStZertI9t/glN/t0pAMZK3LpAI0wIEwjAUZm6cNmZ+UhwMOv/tOGFYLAZtSsb/Bab81dLeLhoZOeH6WVj0JvjbniBbO7xRctPbt9yCuq/9/dm9g4Ntn9Z05surqtwAwSdrGxv12qRfl0kjYb0ayS5doU8ID6vW1mr4ex354umAm43LKerb0ZZp0ICduWyItLkDT3NozWvq2BCs16XFTlSMy3T19NTWLqWlpRms5tAndTqmKy9M6M2Ov6kTtx6QtlfsOuKp4Nq5+ygnBlhemDxU6EFZ6J2742ECkMJuu4/6GH0s5ZbYEA55saHJd8Z+0hMZGR59w6HhXX63Xo+2UiVeDZ1rCsm8cmmlgBrMM2NVaT+tuiN7mMqyuN2nDCFwODrHmKkUsWRDJrS1JQGMqWbEWSvT44aviwy2oE4BwNObM5pnBPca+iIjN5RXc8Sa5CLqY/VqXYVTlBBZeEaCmthQD9Nlvof37FVCm3woKA8OCUjRRrPHZ9QBQbfS0OPaKWm0PggL1Uj1IdM3c4ypAd+RYTbN4MUglbiRs+Kcis2CMgJ7o0FbMnlPNngIF8yCpTtQHLqUZ2LN/skedfoW33GtDOFVQIC1qVD0yGAjXxKcZLhJF18QFKq4Ga0/U5N6ARD8oFwguF4T00MErC2E9/14F/FYiTE+ko3cCV4vMk92DdcrlP0bBFPNpEtX3/GJNDDwKIQH6/YACDyLzr1kbEQuRWnRMJ7zbwkLWew47HM0E2WjiTB2RQge9Q233GTcKcVCA4VMyv96lHN+60UpRw2Do/PIf17YfND31cMTQPy11hU8M8Rz2b9zIazD4jgu+5llzv7ofwBQSwcIj8NZeGwHAACIBwAAUEsDBBQACAAIAKumQUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrpkFBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZbY/bNhL+nP6KgT4ULbC2RYp6cepNkd1D0QDbJsDmDsEdDgUl0Ta7sqSKtNcu+uNvSEq2/BJn3W3aK5ANJXLImXlm5uFod/LtelHASjRKVuW1R4a+B6LMqlyWs2tvqaeDxPv21ReTmahmIm04TKtmwfW1x4ykzK89waJkHPBsMM4iPmA8JoNxItggTbMojVg0DvzQA1gr+bKsfuQLoWqeiftsLhb8rsq4tornWtcvR6PHx8dhp2pYNbPRbJYO1yr3AM0s1bXXPrzE4/Y2PQZWnPo+GX344c4dP5Cl0rzMhAfGhaV89cWLyaMs8+oRHmWu5+hwECUezIWczdGpOA48GBmpGhGpRablSijc23u1TutF7VkxXpr1F+4Jiq0/HuRyJXPRXHv+kPpjP2IBjVkSBolPqAdVI0WpW2HSKh11x01WUjy6c82TVck80FVVpNwcCb/9BtSnPlyZgbiB4hBFbsl3c37gBuoG5obQyTC3nTlR5mSYk2EIxEoqmRbi2pvyQiGGspw2GL/tu9KbQlh72omd++QKfVLyVxQOfEwUBzrO+/6V+Ynwh5mF0b6TpKdVN8sLlXYqiR9foJM+R2fQ6aRJdKyShh9xMzqDrrPhSX6GPTdRlf1nf440BvQCje79eQoj9hlcJFdxsq9xMupKZdJWB6i5kW0jqcVCmXoJxhCOTdoTCLE2ohizPAQyxiGmgNUAJAQW4itJIDJjDEGMCwwCSMDIkQBscYQJ/sdie1gEIR5mZmOsSSCoiEEYALE1xQArCWxdYo3SACXCEELcZNQTao4IImARvgUJMLTRlGRMUDDAjfiO6ikEBAKzmcRAI4jMeYSZUo8SYzoeSSHyISLmQKxqrGhXzSifQGC8iVq4ZFkv9R5E2SLvHnVVb2OB0shHO9pz/LTHii8mBU9FgTfFvYkkwIoXpiKsomlVauiCSN3crOH1XGbqXmiNuxT8zFf8jmux/g6lVafbymZVqd41lb6tiuWiVABZVfhbm6uC9J7p1mp8CXoLrL8Q9hai3nN8Um+FK7BUAvVXjerEeZ6/MRI7akAk35bF5qYR/KGu5L4bk5G9dCZimRUyl7z8Fyar0WJwge0dZOmqu4MiMu4sqZr8fqMwhWH9b9FUiC0jwzBkIQ2IjyWAhO7Bpl1KwiEbExKOI5LEoY/1rjJuii8Oh5RFQRj6cUKQkfA23pxeQlqymsVqGyG+FlvnZ40p7NZx8/JG3VTFbsq6f8trvWxs94Dc2BifXpezQtgUsYWNV3P2kFbre5cbgTvr/abGN98ZkM4s7IDUQEO0d9aOqRutjLFsK+VbGd9K+F2yyXy7TsbUStgxdaOVwux1prWeks5N4ndqpLKE5nt7ZWNT39zzy1Lqu+5Fy+xh56mR/3G5SMU2gfaPJH/QkZPRQYJNHkRTiqLNZ4zksloqV569VM9FJhf46hZaQLgJ1j/RADebi1kjOrsL25c5uOyq38/Uo2l71HdNtXhTrt5jJhwYMBl1Vk5U1sjaJBykeAc8iF1O5VJxvELy/j5TgOh6Zq4KhEcbaO7kAk1+13CcNf0eX+p51dg+DPkFR7tvseBlDqW9g96ZbPV2nMiRXdavMTTO+Gqpu9kPztp2uynnQiywewNtc9am/TZ6H+yRJkxQpT8jVx5Ed5cGuPyR/AVe1HNuOscWyYJvRLOHrT3t7XSqhIb1tTdAft+YXqu3+kOVH8YDw21BQ06pXTrVQrhEdL7gQ43KbPnukSIGWBlFwZBR0zP7cUCxk42cXmMo/Oo+H1z7bDAxBb53J7jZgzzB5HVwHkXoDmvzIEAfEBtk/s3JOPHzcTKlvg0DPw5T14Q4gZ73zw/UUSh2gA7sJ1cPw2OED4hK4xX6gN8JyrauuuVN+/C9zHNh2yfH47+Uboty/CEXdSEzqc/D/mZ6WBXwZaG/AeKwJzCCNT5SI/kf4tZaEXYF6ytQvzT6q/XX/z0K0PR8gKbL0tb0LgafqKUnxMheG783SicxZ+cwP4NqqZGz0YcDcKcOVe4Q/eoo+tgZHk59fQTszSUMdfOp1D9NUaahn7khdcPlLEUDm+qD8dNq4zTZnJj9M6jnxgXq9BWRXkA96WennvBp8Pot85CWeQZ/PfV8pEgc31v80yPsby9J/tvPfD2HpxM/pi7xycnI0I9F5s9I9XsxM/OnL9qb42boJ3Ieb9Wet22IcMOzafwPyfcT+b3XvJBh7IdxOGZjmkR+EsRPSX96ef5bPAvTZG3zHW+94/78QYjafBa9Ld83vFTmN69Optf3XxTUlsJuj4KaXxbS/P8koF2ZnArs3z6g51js9bNZ7FN90dkITOVa5PuW98PC2rCwT3wVhKf5il6CxD/+FkjQ34fEEXOP+p++9tdL7d9KXv0PUEsHCP1v0Wn7BgAAyBkAAFBLAQIUABQACAAIAKqmQUGPw1l4bAcAAIgHAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq6ZBQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAsAcAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACrpkFB/W/RafsGAADIGQAADAAAAAAAAAAAAAAAAAAOCAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAEMPAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />

Arean mellan kurvorna

<ggb_applet width="872" height="474" version="4.2" ggbBase64="UEsDBBQACAAIAKM4mUEAAAAAAAAAAAAAAAAgAAAAL2dlb2dlYnJhL2d1aS9pbWFnZXMvZ28tbmV4dC5wbmcBPgLB/YlQTkcNChoKAAAADUlIRFIAAAAQAAAAEAgGAAAAH/P/YQAAAgVJREFUeNpjYMACbEpYjlqVsKYykAusiln+R/Zof7MqYVntkMXAQ5YBpx9u/9+0Ouon0CUPLQvZdEk24Nzj3f8P31n9f8mxln/OVQJfcXrJqpTlBUgDMrYuY/l++sG2/zOP5P/feGni/+1X5vyP7zf8Zl3CsgbDSyANB24v/3/ozqr/R++u/X/s3vr/x+9tAOOJB1P+9x9M/D/3RPH/3Tfn/29cHfULw0sgA/beXPy/dWfI/47dEf+790T/794b879nX8z/3oNAfCjqf9eh0P89hyP+r7/S83/O4ap/bjUiCC+BDNh5fc7/kvXW//PWGP/PWKn9P3uN/v+Kbbb/m/Z5/u88HPC/44jv/5ZDnv8b9rn8n30q9/+qc53/4/oNvlmVMs8FG7D4VN1/v1lscBy0gP1/+HLO/9HruP/Hb+L7n7ZD/H/OLvn/+bvU/vceC/0/72TZ/7BO9a9YDfCfw/Y/ZAnH/6g13P/jNvP+T9rJ9z9lD///nP0y/+dcSv/fvTv2n1MVH6oXQAbA8JIzdf+XX6z/v+pq4//E7UDb9wv8rz9t8n/FrYr/hcvsflqXoQcilmi0qWD5vvpa4/+UXYL/J10O+r/0evH/4G65r9blWKIRV0Jafb3x/4KrOf+7D0b8s6/k+kpS3gAZsOxy9f+shWY/bMrITMq+LRJfbcrIzEykZGcAL/RHvVgEqlEAAAAASUVORK5CYIJQSwcI5dRmDEMCAAA+AgAAUEsDBBQACAAIAKM4mUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXZzQcTBe2ylqxG6utziK8vEpkRX2VJbqQ6L2vXlcNsawSRI9OkOgSJdFLgugkJFaJTvQarLZEwrfv9/365pyZOXPmzp1z5z5n7vM8f6yrDrnFeouEhASiqaGiT5yHiB0NAhLH1IJ9XhIS6AtNFSXDJ3M/C6gNGExggwaZ734wzbytWazR+m7oxstGn96a1+dhHzmw7UQ/rNZSfzAQL7Tn8OXOqhDPBfIOkMFQZYObOh77mgcOJyUljTwO62JgscO+gK+GX1nua9JMkEHAY+J+10YtzE7tFd5By8v5T7/JYA79bM0qa2tv6+npPTlep7IBwwrXtG2pKDNHRh4aGhsfU9jdg7u1h/2RtSGHkfVg3zNDgdH9WDG4MAep7+YIi4qKirRlUYg4/NxESSmitXl0dHRtSeqvv5z1Bw8ODgbKtLNHbkwMDeGSkjDFm98N/c786VT37t1rDb9ROFhoixoa0qhLkkQO+aXngFITGsr6fb/EAKsKSkpKylrY+ihoy6r3s6dlRQxt3kqR2YcHP3360sbZ0bGoq4urxXt5oMaiBQqD8S95u7n17ExU1HktyjIwMSUQOOVDolUTYM89vZc+Cp6XXfnvTgqCIRCzfW9tDAYz0+CcchlOGnH+T/j1x35nk1rL7ib3aR/8qurK50caGsiAgCY1ZKmWtiJZ6ntSIHBbmLuArzTvwa8dCk7F5pl8jdCZpdsGLgIPa2rEMJd8D+lqyjMYcsDAnONjFdUzQ06FUIHdUeyMjbW1NYiGhqlrKCkpyfTjkzqX/HXZ5VZ0ycXUUp0DZaECJp6M8nYOgReazC7D03y5Ess1NjVF8ejRI4+lj2ampBvXpXJvrCjIyeOOf3STnRAEutI/HZ+dMRIsL1naDls8ZiPHx/XR7JF51u5kKgqfVnp7w8vSM76mHUVHcyBt7hjpvs0VECQnfbFzSLPzmcTQzC308x9//nZbQ29g3/Vce0DVtr2RkdHzWuE/uxXl5faEg8UjPF4pMLAZu7I+nC795Aju6+fXH3ZFOGRStJxv9qRPyvM/3zez26G6tXHdW5ALRKFQceOE6qSmpqbu3t4H/i9FLVvhzX/NgEAbzoaKuyEvGIWEhVV8fI4qCRYc0J07KlIJ1cBcyZ07z4y43ZWtRN7YG5LDx++SJnNR3knAj1ibH2zZYh8z/Vho81uY+ylQz3z8Tlbzqz6zkIXSdej6dfrUmrM8969O3ABXM+UOAqSlWe5VSg5H9RQWYHnjREDucx9NUQquY+n5+ftiz3ZfysY4OiBNAwF9Zv3Y9/ukoEElU1GquAGxuAD2PsAt4oqeNJoEvgUJRkvEKKnIcQvucIOB6Y2vNIPu0SRHvd8HDi119GY53ISN2kFXIG8rxXYk1rutq+/dnz1NPj4+dlVs/p6RNjdnjsvkb+n4rYhRWDq5R6YM4/n71tHJBDuQFiJyf7J0OpWSjGe41VfmdZrWPURHVKT72dmZ8TvBn1GsLPKOrmLMwvoaAo5RzUX+kHg1A/NYhAiqNwbCU6CSK1kcuI8vzXLREaSCQJ7hXBiW1eerzRqAjo6Oq+Ky/P3GAkGJ1oODgwlDigUplltpaXT4ThboDvN4NqmUl8vtqN90lGh4Gx28vKECh+//6+0rwYl/BBaLW1pMVOoy32000sT7Gzw4IRBaNLiLTiHxvvQP51u8mZIMcmE8FUECE2pqnE+rJ+maGulEBPlqampWJTBcZZ/2F9ro0Wj0pqcASHOrwX1aFM2uOIwYuzq+Jqf0/IaGOlOUtrFgvizi9NKqftUR4z0ucbFUs2J0Ozp2b6tL3Uqpt6anpxfR11gHqiaJCwgMgRPzYcrQx7LPEZ6o9bpBLRGWXONiibLocatKXRRkyJ6Pj6+oslKDXUhM7LEpM6mKgvql5brshMM0Skf69mop9rRDhgkTFD+ml6W42ayewilR4SdgI3Rm6NDcpzKhlTE/w9uE8vEZy9dHmMurV1Fy2BDQqXX2MHCc1vTu3rsxDA+0PNlYB/v+/pM6fh6Z28qcpLsm+jb+7Q4w8BBI+vxA7VsWhPQ2EJVHUrdhBP0WpYEZfhB7+3n3/EpvbIW8k523jK/koa0ed4ixcMSbmheAXF2kRzBjJV7/QblSttxFnldKepV56sDe80rtf5xFITjuVsKx92NajujjVodN/dDxWItLQzL7L1XIa2+3Pob8or+G9X+yg+2QanX+UqK5NeSMa69uol+uhG0Ldznqxfee+wq9cvv3hgx06puct+kAHFCDoJ4wFowAnamygOMKgTsGHJQ4ugafAGTifMvrk65lEHNtecw9eAhpn9mGAJaZ7Lz7qGXDiXkmchuc+iY5akQF3KdH4iqzSbnWE7wt/EWq1wfvK0aGWMQmfu9/sQZnmKsw48nnBq6CsOCpydcnTdm2Al+bsEVNwrGAXC/kUICQc1ByBjvlzvY29FIumZMMDUK2t9uGXOlMql2jKMgsUllIVHIXZRAN+jv9+k6msvWU2tNYDZ/T33jHU9hGkazMwi1gUw/24T14Ro8w0ddIdQZAz0kPATcovQ47FbUmd+i5iSZoQaDNcHESUL+Ch6OC7sYJHBzHxy5PvYx89FnVb/8BBMoZtT2SIJGJTs2Njxi5D6c1wfhIenapCt5MULee9mqp9Afnaj/+VGEs5sOu4oyVLnGSNbu3vhpU6drOp+VppSC79IRl+IPJmhfeMWH1kFDHCGantEPmL0UOYaHshKyu2Dwol5C0B6AHFg1AUyHdqvzwP5IUX+9eiLE7ix5MkWsEXzMCiVteyORB7wi7rwmVt5Y8Y4oqxZTo4WYsL8AgstU+7Ol58WqTTQmCf4g0ZvtL7EykGLwWMpTeznraIcHk/MfYvNtH/K4xPVzq3SCCGOAJAJHzKraz7V2cmYZy8Xez7tdTkQxbfAh4CDlq/X6KeM2ksSc+3dxBpJ2y3ZkhNaLaffuqj6P819+0JIZkd4T+SROJswbo6Y66aH925Tx7TcZHOTY2j5U0eDnq+TCKv3rYMqo+1lEcqHGo4O2PqZ+xT6OQQIpaQlDI01txvm5qaXOGqf892NH/tK7D9sPlzccr/QJtMpXgMUVL53ehd/eFF563/moVpCyVIdxiFacX1vpwpbxwdkFiRGUH6795fRUtAgqqcyKBbkwm3mliVMuckNvtj8yvlRX5BA3IqtZUs4gRwET1BoTdvwBp6mgK7Arn+SLNjw3Cc22L2m4PXPrZgQzCYxZuftAJMadNPJiJlD5mRlW7clphUkXJxrNDqORPFo7gCp+d1i0gqVVmFTOjVc5Il80DCmpYYvuP9qVJ33cUNr8vKLTctPwBGinfbp9+7BpbFUQ2AeVZqHsielzJo2H0mo8eMfWPjkIanEbpxAU+H+o0JzZdaAVn+//+fkqVbbXyQWxv3uxIbtX1jAXTIjIrb6ZXX8vBJYq1++mmAwlBYH3qV8Fm0BBo/AD78euFWce71Melb0nLL9+VcI9ZnLkq1sBU3JkS0hkDZIF2yGoJqA9UnktE2cZR0M2g2Aigx2bYQIHWR6o9bXW1tUXKkatGBactkSYEUpS2MGG4wknWag9HC4UssJVtjlMkuN3NDXWvABCIAuqKacVcnc8uxFh+mpSnpqKivdkTeS+th2RtoMOlorst8246bnH4WSOtxjgNB2LztJNvyjXNoDURymHrxrHYob2OYfEPVRR06l+va1s+rUYDhjnD1H7rqQomhpvF14rsoeV/JhrxjuKXpQWRjfxC9RQ4bjiKwwUjMxtZSUGX2dA1wW7RWJhfSJqQDuh77ykOpraRGpScBC41k+Dm+sfzqocmrrf9wcWOf2Q39g9DaITdAKijQKqDrnO6A+95sXIjW+qeKP9pvP0ZoffibBl3tkNnOMiOQzF6AIqnRqvOXlhwRj3khX9Grpg67oyX5cg/bV6MjA6hWN8qidgO3tJhprfvmyn5e6eRv8qW+t+walIWfNlVKmB3pKWZX4Vft01YZqz/wNgHA/yoFLC6LUy4xstXlZpyfPyeJWlPXSZKSXB51ZVTkT7s0R9MJ4pLXwXSDIp5OZVclQThzgjffNb0K8tjFAtFs76jVAvPYwG4zPFADyx6+GrbvI2dpkF/YKMgT5O6Z/YjeCijyoyVK7PzlIjRbzqVKymDo1WbAXkjzKj1nM3f+A9PTgiOQ8MrV5+xM3p1N1YyK7Xpc5/mYXA364rhPiWUNL1u9lrBdF6dmyufbwn9RQzx36OJM6Yu/u6ZV02BY6WUoc1JpFmu7Nt95KZnMM4zoNcYI5sAwEHgbmSORFgw1sDufApn2a0diPNV+IFYemkR4Xi4ziMkyVZDsbM5npbdI5UBwD1icv9bOM5c8vC5wKP1spaVjmAd0xMzDjf3wqMkB+Spt9Ik6x/UIJy3IfhuH6r3Z6bl77NefsNlCTzEAenECa1ZEmxSU5yVjvNQWi1ueO9izZL10STCSvHPkFQ8AEcDN+8wWKuDm6/BB3VVV3uD/sZfR7pZtuvzfKeRebHe/z+bNRaLhwOR5EBh9Sf7LcUXf/xJTmy+9eVnv+smuIB49ENHNh5+9urUA8eFEWFewJpCobfXPGWZ1W7wjHA0Ox5Y7XOobMdNQ2Q4HYD6yxMqi1R8opJa4LyXlUjv4In2j+sDzPrW0Y+XADQc2Wgegyc+LbWyrXD2ADNXh1HSxWv/TgA4bo0ILkSic3UaezhtVZbxj0UT99RMObnef3T8R+2R/kJ58duTc3yBTXCp39e8nLVp2oFPwJ2+XREmztm83BdvnzRbiY62ZV/yi8GTnZUaQyqIeN9AD8acFH+ew59lez4hnBmX9gUdPXNCWnqDi2F321jCbt1cNAK5hFtjTzPUQyNYoNMcUQIiGhtJ86Yd1azeNyuion3Mlz0I+FfqOONDhg0PCRhsba8ry/5aKEmay/ib4BaxDJAV7xbItnbbx+N+D/lUW6eBW5aNefv2EG7jq/0ZpWc7W5fFCHits9IQr2rUYXl8oIeZRVTLZuNaOC3miaS6VAIAzYGc/GhQhqa9CMOIb3bNPW8o+hm6wgydplDZKXATER341ZXpsJSwESc9HOVNrGK0sHVrM9qP35cGLLwIPj1duuTnpuC4L0Ry6zAxt+fztIhRPbTK1oPNmjkWYIe01N/qtBHhfyDwSDbF28SqV6jLvS+okMVl5MMAPQ+xwomYnzpfdRnbLTerjeR6fqrrLXhr/SYykjTnIT8+SJiRkfE54sXPSoXGUCs/v5PoZJHDb6yvXCBs5vVrMlpfS2ZH2sDZjl86P+3PejustfOUli2+b7MyN2ftvNxkwwdVH4LBYAZqoA7qw9nSHj706GRm90OA8qB1nT3FwuLi5VJyA8rJiQeBSBMZ0sDV+xQWsg0seLULa3zpgHnINlOdJZ3RywaGhXXmYF5JKExNTT3vwVYOWe+VNrCz/cspmFOrz4VPFXcGPXt/on9KzfkSnS7ad2jAaMY5OFMHltSEda0TO7tXnj2OLXSzQLw0pit/pr+3t1ejUKJqRNif7ZXKAaBDkTxveaHGLDGT3w3lOEPAKfdpdK6IUrakpYWps7PzrbbvxPG8MLDvzQBcMetPnCfF/JjEmMRmM4rb3t4eysbm3nQnyMKCTU5OzmfrK0fnMBETJOOT8+SveLhO5Q5Y/OaLirh1vvg2MEMrAP+T5sQkElU7GJRAzA8xddrxaVLfCtbMNEzBIAvo/6v4/zcFkfXYI5n/NbFHmn7/pZjMFjl9/lKI5N+mqaqrUqtsG/kfUEsHCNj/tHTNEAAAyhAAAFBLAwQUAAgACACjOJlBAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAoziZQQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlWmuT27YV/ez8Cgw/dHbblUQQBB+ulMyuJ04946SertPp1OPJgCREMaJIhqR2ua7733sBkNSD0kqiNt40sS2DpC4e95z7AqjxN9UiRnc8L6I0mWh4qGuIJ34aREk40ZbldOBo33z91Tjkaci9nKFpmi9YOdHMoaGt+sHd0BF9o2Ci6dR3iOvQgR5MycDExBswHrAB8ZhnEZtOXdPWEKqK6GWS/sAWvMiYz2/9GV+wt6nPSjnkrCyzl6PR/f39sJl8mObhKAy9YVUEGoKFJ8VEqy9ewnAbne6JFDd0HY/+9f1bNfwgSoqSJT7XkFBqGX391YvxfZQE6T26j4JyNtEcGxSb8SicgZaWYWloJIQyUDXjfhnd8QK6rt1KnctFpkkxlojvX6grFLfqaCiI7qKA54DP0CCuZTuO6+qOQS3H0VCaRzwpa1lczzlqRhvfRfxeDSuu5Iym7gKKd1EReTGfaFMWF6BVlExzQBQWlC/htigfYu6xvLlfrQdfwV8QiD5xMRZQp2CYaLZ75ZIrW9evKNXVStan1VCZprEcU0fURZ8/I0M3dHQlGqwaAxrLUl/p6plOVGOoxlQNVTKm6m4qUVPJmErGJI9oWd+v1KwfbOjZaEnWtcSgn/hY8JHqb+nprOmJhRKfERarlw1BYt1Yrl80Zn1rqVtbNlhXDa6/dMR/Ei/rTI1IL43w2qzKGvZP2rGWZkbHwmszmuYVJnTvjMYpem5P2Spp6G5XSYPuUfJMbJtJMV1DFuaS/+SnMyU5S80+M1rmOY7fY0Jb3/D6xuVVi+v2MRiebFHjURMKx/WCUDETsrVFl3xRiCUSV8YmhBEF37VsCCUUYRcaW/iwgTBFJoVb7CBLtDYiwm1NRJCDhBwmSEYg6sB/pnRpC1EYSzy0lW8jYiJKEJZxy0SAApKxDzAxCEhQiih0ErNjMS2xkGnBDXGQCQsUUc8WkYVAP7iHyQ1EMCKiL7aRYSHLQLaInNgUAdVyxNphUANZOrJEVwidEDZVyIQeDiJCG/CCLC2iFtwZj7OWFYljlGTLcgM7fxE0l2W6JR2k/vxmC2vOirK5BiHIVqucqLLXRsp8MY6Zx2OoK26FGSB0x2Lh5XL8aZqUqPV39SzMWTaL/OKWlyX0KtDP7I69ZSWvXoN00SxQTi0z+Zgv/TgKIpb8E2xEDCEGRG1it/AqsZuQdOUsfprmwe1DAYaDqn/zPIUFuPbQwrpLLcM1iONAtwf1DXGsoY6JTrFDDMc1IDAVPhMGbxhkCIGfEss1sKW7OuTmh/o7jI2hS03Tti3TMl1MTDU1v2tVYxUvGizDXLhcjb64eVPcpPHqUZZGSfmKZeUyl0UaBMpcKHWdhDGX2ErKod7x515a3Sq/Imqs9w8Z3NUIe+GrNE5zBA5pUAoCdeupVsqIlbVSupTRpUTLUhS032PXkBKy9VQrpYB2tbRaU9yoifVmmqhQxaO2YWTSZkT1tEyi8m1zU0b+vNbUUPI/LBcemNuaUayNiU8cE+8bczzaMrHxnOcJj5UhJcDlMl0WyrLXFrIs+DtWzq6T4B88BJd8x0RULGFsJSqXpfyM+9ECOqrntZ0wQeyPsFb1NOBhzhsVY1kYK2jlt/q6WXcey6Fe5+niTXL3Hqxma6njUaPPuPDzKBPGiTwI03O+sr8gKhgE+WC9HyhfgBa+CDiAZClQ1BBblrM0l7UvuC20wkerLOeF2DUoHhAMA7GkEgHnorpEE3ENF3JYHvMFlMWolFY7XSZygpbBqSy5BVUo9X6GSLPK6LXAigMQ2GPGiMXZjImyvAYpZg8834BNDvd9GmyDCVxJjSF6ZMpsMs6VwZW1o6EMhpN+uraYlTuUEOHmUOQX0pLbTuLib1EQcBm+leUpLHZDGNYQhgrC6hj0wj8oehuoJMsFzyO/1ZlJUGCdy2a1jV6PALXy32NwwkfihM/D6XidvW2d8e9BZz9dLFgSoEQWoO95VU4jHgfaqvhhugghSodl2TyR392kVW049TAdEMt2wAaRVccOdBt5ZzdyTQI+1a/+Pp0WvESVKJ2h5ICBzF/H69iyiuKI5Q/bOWsagScqlEfNSY0oyEYwU8iLUZgOEgBrmCVh67+QT77jaR3266c8CctZbQZNFoMqR6xVZSmIbZN+LId7WTb6smz0YnndPyTjp7OsS5ap+4VZ3iItPJK0sD9pbC9ppC9p5GzS+jgmcSVlLnleyliXMrqDMdaTLm8vXWZfusznocuSdGHDeV6+vOP48g7w9bqt++7EyUvVSYCIYWEciBm7SJw9Tl6nqpwd4GxPUdk3/XV42Vkc0mOLw5OgCw9Al50IXdYPur455TjorH7QvUlK2Kay+IaX95wnu40uVMgJAMkuAP3HAdyuY/1uHWtgx3DEx6SublKyo6w9BmJMiQSZ4nMr219z7+L/hH83u5e9YfJ4OJJtMOhOMM7IKCdiUcTi/R9aROpMdsFEshHjeUUaL0t+6+fgKqs3oGpl9ekl1gWXMj/JC1HpY1tcTaNq7XRmlubRpzQpO6nlRLM7h7ow9NTxEUJp8mOmDn/mkxPNOegaM/3N8KfX/OGT6TOchj7qfkn6hLo9Tg62zpqAlqo+a7rw0ACxSzRCiXoBcIDOqsuncSJX+/PNLf9lycV7/a09BPoLupjDOjFcBJfoz0gsX+Seuco9WOWepJN7qurx5BNHRdnqVindunpgfb/V9eBUHv2LA/2Nlyfq6eqsd9APq3dp/BCmyYeLFWgKsCsUXnyrxvpQwd384+XlFZJi82MFpvsENifqin08jq4cYkFxAmNKvk8weYJa4LF66zkt4JaHEvstEvbQuy3UmztBzIFzmA3ulPwZtfIur3yKWrnlDj8ted0gLPbMuI7Df/plmZZ/vc6yPK1EyOfoOudsoh4LD7tdLj5Ie/94Cbf1c/Huqxiqm13hW8ygbU539u7kDLyLkuXlO4EUkqdgQ91xKbZt3TBc06amqVLq0MLEoSYhNqWGiy3YvXxqz7Mfh/S6SWvsCumXDZOSnF341F+0nXuBYzkSHdF4qjn5tGKA7bqa2AlfbWPydWAh5JviUbYrbI41zl1nfOwwuDdtzdAD3JtnBJcocHeftnbAxU8Prnda0TzfLrLM8zY9Mts9/bYnOblsxpb529727M+2dVrcSraqAqkTZOfoCGqxAy+gMlWurU6PZJe+WvfNpGeYxxExWeQdspHmvFVe89pkdkIWO/QG4ItlManTze6oY+hrUefwGdv2nscrLuRPKQZIvH25PHBKyU87ZOO9DtmOOXH6fzlkM/5gh2w7vdLc8MpvK+aXsuxEE9Q6KO/joIfe+XzhMtN0XRPqTOo6ru2ahiozyVA3bMchrmXZuu5S5/gq81VTCFUX15c7Did6lEevztoK7QjgJ2K2XlsCHOt/8NnV0GFLpBuWWP30n9b+5q39/fcEA6TPDOd2jni1pzI1137tcfJOvzG/aM3oRJaINrfqwjZ3btcP1Cad7XrPzWPvEv4LnrV08sdo/ceQ8sfJ9Y9ivv4fUEsHCBPI+95RCgAAbTUAAFBLAQIUABQACAAIAKM4mUHl1GYMQwIAAD4CAAAgAAAAAAAAAAAAAAAAAAAAAAAvZ2VvZ2VicmEvZ3VpL2ltYWdlcy9nby1uZXh0LnBuZ1BLAQIUABQACAAIAKM4mUHY/7R0zRAAAMoQAAAWAAAAAAAAAAAAAAAAAJECAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAoziZQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAohMAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACjOJlBE8j73lEKAABtNQAADAAAAAAAAAAAAAAAAAAAFAAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAEAEAAIseAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />