Matematik 3C: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 94: | Rad 94: | ||
== Lektion 6 - Triangelsatserna == | == Lektion 6 - Triangelsatserna == | ||
Här finns material att hämta... http://en.wikipedia.org/wiki/Trigonometry | |||
{{flipp}} | {{flipp}} | ||
Versionen från 1 september 2012 kl. 21.14
Länkar
- Roger Bengtsson har en sajt på wikidot. Den är CC och innehåller mycket bra förklarande texter, mm.
- Daniel Barker har en sajt med flera kurser på gy 11 och gamla gymnasiet. Här är Ma3c. Daniel är en föregångare på flipped classroom. Det är fritt att läsa och använda men inte full CC (dvs du kan inte själv gå in och ändra).
Trigonometri
Lektion 1 - Algebra repetition
Uppgift |
---|
Repetitionstest
Skriv formler eller algebraiska förklaringar för detta:
|
Lektion 2
Trigonometri grundläggande
Andra länkar om trigonometri
- Läs mer om sinus på Wikipedia.
- Engelska Wikipedia är ännu bättre på sinus.
- http://www.walter-fendt.de/m14e/sincostan_e.htm Walter Fendt om trigonometri
- Detta svar får du om du skriver in sine på Wolfram Alpha
Definitioner:
- Motstående katet
- Närliggande katet
- Sin v = motstående katet / hypotenusan
- Cos v = närliggande katet / hypotenusan
- Tangens v = motstående katet / närliggande katet
Digitalt
- Grader och radianer
- Miniräknare eller dator
- Datorns räknare
- Excel - så här kan det se ut
Definition: Ta reda på vinkeln
Om y = roten ur x så är 'y2 = x. Dessa två hänger ihop och den ena kan ses som den omvända av den andre. Detta kallas inversen, den inversa funktionen.
På samma sätt som det finns en invers funktion till kvadraten på ett tal, nämligen roten ur så finns det en invers funktion till sinus och cosinus.
Om sin v = a/h då är v = arcsin(a/h) eller sin-1(a/h) Om cos v = b/h då är v = arccos(b/h) eller cos-1(b/h) 0ch på samma sätt för tangens
Den rätvinkliga triangeln
En rätvinklig triangel är en triangel där en av vinklarna är 90 grader. Sidan som är motsatt den räta vinkeln kallas hypotenusa och de två övriga sidorna kallas katetrar.
Om ytterligare en vinkel är känd i en rätvinklig triangel är även den tredje vinkeln känd då en triangels vinkelsumma är 180 grader. Trianglar som har samma uppsättning av vinklar är likformighet|likformiga. Detta innebär att om man känner till en vinkel i en rätvinklig triangel är även kvoten mellan sidorna känd. Dessa kvoter ges av de trigonometriska funktionerna för en vinkel A, där a, b och c syftar på sidorna i triangeln i bilden till höger enligt:
- Sinusfunktionens värde för en vinkel är kvoten mellan motsatta sidan till vinkeln och hypotenusan:
- [math]\displaystyle{ \sin A = \frac{a}{c} }[/math]
- Kosingsfunktionens värde för en vinkel är kvoten mellan närliggande sidan till vinkeln och hypotenusan:
- [math]\displaystyle{ \cos A = \frac{b}{c} }[/math]
- Tangensfunktionens värde för en vinkel är kvoten mellan motstående och närliggande sidas längd:
- [math]\displaystyle{ \tan A = \frac{a}{b} = \frac{\sin A}{\cos A} }[/math]
Med dessa funktioner är det möjligt att (givet exempelvis en sida och en vinkel) bestämma alla sidor och vinklar i en rätvinklig triangel.
Texten i ovanstående avsnitt kommer från Wikipedia.se
Lektion 3 - Fasta värden
En halv kvadrat
- [math]\displaystyle{ \sin 45 = \frac{1}{\sqrt{2}} }[/math]
-
- [math]\displaystyle{ \cos 45 = \frac{1}{\sqrt{2}} }[/math]
En halv liksidig triangel
- [math]\displaystyle{ \sin 60 = \frac{\sqrt{3}}{2} = \cos 30 }[/math]
-
- [math]\displaystyle{ \sin 30 = \frac{1}{2} = \cos 60 }[/math]
-
- [math]\displaystyle{ \tan 30 = \frac{1}{\sqrt{3}} }[/math]
-
- [math]\displaystyle{ \tan 60 = {\sqrt{3} }[/math]
Lektion 4 - Enhetscirkeln
Det handlar om trigonometri och cirklar.
Javascript
Lektion 5 Enhetscirkeln
Lektion 6 - Triangelsatserna
Här finns material att hämta... http://en.wikipedia.org/wiki/Trigonometry
Lektion 7 Sinussatsen
Lektion 8 Cosinussatsen
Lektion 9 Problemlösning
Lektion 10 Cirkelns ekvation
Exemepl till boken spelprogramering.nu
Här har vi en film från Youtube.
Javascript, titta på funktionen cirkel. Sid 5 i boken spelprogramering.nu.
- Läs första sidan
- Koden ovan anropar en funktion som heter circle och som finns i ett bibliotek på sajten spelprogrammering.nu. Undersök hur funktionen ser ut.
- Ritas cirkeln på så sätt som i matteboken?
- * En cirkelbåge som går 360 grader är praktiskt. Det kallas polära koordinater.
- Kan vi gå tillväga som i funktionen för triangeln och skapa en cirkel med vår formel från matteboken?
Testa funktionen i GGB.
Gränsvärden
Introduktionsföreläsning i två grupper
Vad händer med uttrycket när x närmar sig 4?
Lösning i WolframAlpha: http://www.wolframalpha.com/input/?i=lim+x-%3E4+f%28x%29+%3D+%28x%5E%280.5%29+-+2%29+%2F+%28x²+-+5x+%2B+4%29
Lösning i tabell-GGB
<ggb_applet width="959" height="351" version="4.2" ggbBase64="UEsDBBQACAAIABWxNUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIABWxNUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vptc9s2Ev6c/gqMPty0PVvCO8mcnE4kN5d20k4mznVu7sPNUCIssaZIlgQt+aY/vguAFClRdaTmrLtJqokNAlhg91k8uwsqHn+zWSXoXhVlnKVXAzLEA6TSeRbF6eJqUOnbS3/wzYsvxguVLdSsCNFtVqxCfTXgQzpo10FvSDyzOI6uBr5Us8if4UsvIuSSS04vfUrFJcMkUFLicM7lAKFNGT9Psx/DlSrzcK5u5ku1Ct9k81DbPZda589Ho/V6PWy0D7NiMVosZsNNGQ0QWJ6WV4P64Tlst7Nozaw4xZiM/vnDG7f9ZZyWOkznaoAMqip+8cWz8TpOo2yN1nGkl1eDwAMYSxUvlgYmFQM0MkI5YM3VXMf3qoSlna7FrFf5wIqFqZl/5p5QsoUzQFF8H0equBrgIfcwwQwH1POZwIKAkqyIVaprYVIrHTXbje9jtXb7mier0hxAXMazRF0NbsOkBExxeluAP7f9Uj8kahYW24HWHnbBYD7+DwiDiwbIOQFUY3xhfqjAF9xMjHa1+gOksyyxm4IcQb8iaKhrGEK/2gfh+rzuStf1bEOwa0g96ZtfgenIj0REGkTsECKJDyPiOPAeUayLakev67dqSauWd9UyD9T6/MIDtUL01ZKOTrfnCVhblQE/AWnn7DAS1ucUU4wuTENcQ6GR0k1hNwbnahvqGu4a4WS4W86dKHcy3Mlw9jEgtwTlQh4PkpzEot5pbilEOmcJsWD/2Z+eRnZSJP6uRiKO1ij5xxD2Dyg0OfHpFY5HTZob1zxF5dLI1tTRalUa5rLAkhcRJICh0gOuCUQCaDyTiCgiAnEBXeIjaVoPMZN7OGLIR0aOMGQpKnz4xW1ekkjAXmbQcwkKMY4EQ8QSmyOgM7LBAYFCGUgIgQQsMtqJUcsk4hI6zEccDDRh4Zn0yGAd9EE5RYwgZtYSD1GJJEWeCS3CTcRJ39gOm1IkMZJmKcQWxJWLKVjhI2bQAMHzrIy3zl2qJN+eivVjnOaVrn1Xj89XUeNHne2JR9n8brLnbBWWunkGIShFbcVzpWmnID4bJ+FMJXBtuDE8QOg+TEwE2/1vs1SjhgPUjS2KMF/G8/JGaQ2rSvRzeB++CbXavALpsjHQqrZ1eqyqeRJHcZj+BCQxW5gNUVO2bSJsyjZjxGmZZ1kR3TyUwBy0+ZcqMmNAMAy6H/DgQz3lwQWo+wmAufMwsXl2dxFUjId6SuDdRTVodb+FFm5U2fhyUZh4qr1vOt+Vkyxph/IsTvU0zHVV2DsYJMHCgHqZLhJlfWvPHG4z87tZtrlxTmVur/cPOfSwM2C2mGZJViCISCrghrGo25lrrYyxbCuFrQy2Erg5pTjazpOAWgnbzlxrpeDYnWk1UtLAJLhRE5c2j8DmXZJZzpi7UZXG+k3T0fH8rkVq5H+sVjOgW71sd0vyX9pyPNoj2LjMCxVG5VIpfZhypiz1KAeLbqcqSW66ot07Ja0FO9uDi6tV2nioXuOzx+RIK8cfk6NbObhy9QTfZetG69Y8WUupxER3liK0vJkXWZJYsfvO89yqcRy1pbmmQ/iQVSbgwc2v4H2hSsJJp8Cb4b9betSFA/qv3a6TtnyY0Z8Ojk5AV6mKt3A1TnY2dahfAza1swBAukHUjIZJkq1vIHvFYfJtFOustc5OvYfq8z7Ot0Grfqlg9h00caHaWA0rnU2zVZ4orXYSVo854ztVgLkuJaWQFaqsKl2O3C57Nq5K9TbUy5dp9E4twPNvQ1NgNdDUibbsj8D0FSx04zUBQpMi/gG0d6ORWhSqiZbEvkC5ILWzuJsge8N2q1dFtvouvX8P+WfP1PGowTMu50WcmzSHZlDx7zreieIyhPtC1F0H4EtA4XilY20C0vpxaY4A1oTGk1Bhvw/TKixiKLqQ20zy34BLS/O26SIcjvIlhAAMm4cvN1+hK7SxKoC2K3iTQtrmwtsqtcq2iQFWWXYDL1A2+xkovpc5OucB87+THIEm+TI0r3J4y3ngV9eFdrsfsmjfsXBuFj3UpNxlo1wpF9C6Tt8oh+1s9u8YE1abOInD4mGfC2321VBQ7+CFsbRhv93NPLyOo0ildYhCqnNOOuzYSePYSePYf3+Jh+IrdInoMS6e/OniD7l42rh42rqYGgcL9DXaoL8ifoyjp386etfRO+5Kq5Uq4nkb+dR6CzRWNQ42DOpa1/Vg8x7qVrW2HeNBcqQHyRN58ARvsAPe+IzdwQ+545P2x15WgrxNm4JKOwkf9RPRvvMmvci6hGRCBRE+ZZz40of3dO6f7Kc/hoI1KNiJKHoRYVAADEyE5HDZJz4lmJ0LBm9g8BNh9Jh8SYcCGxBUBoIxD3P27SU/D4xpl1PbCveS2hJ3BJrpIWrRYO8t/TxQusRqobCjoRzkFw06YAjzzoSly64WCz8aS59kNlaCDhpf0icB83geF/uG8WbvzySLT0VztKJ7tOLoo+15EA8Z7n735T8NSR8/V9k/V/xJH+zj7vAOuOPT9ke/QnaJflKFPMBwTLkPJd5jhBEpfP40qauPQTYY5IkYevFg8y8PfM4CDuXe86U8EwavweCdiKFHYjrkgUHgmYsKxoLy811UuifRpk15dNo8dCAMk+49BZ8LS/dEWize0Vh6B2PIBQeyRUMIJ2ei13XzVclffqky/bdK6+Jhfqe06x74mkSrjR50Vn8gJT7ldyQfQNbcjScUjdD0qJi57t2HwSRfeoIKSFye7wWMsTMdTHMfnjBjPjvK/N4d2JjPpORMMniAIJFnugJfN1fgCTfmHxUY171rrzUf7GeM4IB7geed6f3wuql+E2HMF0eZf6jw+fBq7jFGpU8h7fJzkadJtxNpzJdHmX8oxRrOcMmoH9DAk/RMGfa6ybATz5jvHWX+oawK5IHMKnxfcukT/3/wxjQl5LBdO5/P62ZJdmuOSpHOklutIpUcV3Ym5P+m7oy6/+dm/5qi/mvKF78BUEsHCACfJA2yCAAA/SkAAFBLAQIUABQACAAIABWxNULWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAFbE1QgCfJA2yCAAA/SkAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAABJCQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Grafen
<ggb_applet width="730" height="323" version="4.2" ggbBase64="UEsDBBQACAAIAIewNUIAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAIewNUIAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1svVdtb9s2EP6c/oqDPjVbbYukJNuF3SItULRDWhRLNwz7MICSaJuNLAkiZTtFf/zuSMlvabe12eZEPpG8d949pGfPd+sCNqoxuirnARuGAagyq3JdLudBaxeDSfD82aPZUlVLlTYSFlWzlnYeREMeHORwNGRjEtb5POCcK8FZOuDRVAwiKdVgwmU6EEm2mKYZS8MJCwB2Rj8tq3dyrUwtM3WTrdRaXleZtE7nytr66Wi03W6HvfVh1SxHy2U63Jk8APS8NPOge3mK6k6EtsKx8zBko9/eXnv1A10aK8tMBUBRtfrZo4vZVpd5tYWtzu1qHowjdG6l9HJFYQoMc0RMNcZaq8zqjTIoejR0Mdt1HTg2WdL6hX+DYh9OALne6Fw18yAc8mQ6DeNYiDARER9PAqgarUrb8bLO5qjXNttotfVq6c1ZjMLpGLdAG50Wah4sZGEwKl0uGswoOtS0ODT2rlCpbPrxwR/2BP+QQX9SpAu3zqcBV8LwCT1jfOI49L4cGw7AVlXhtIYQT+HzZ+AhD+EJEeYJR5Ikfin0c6HwhHsSeRJ7nsiLR5418jyR54nEX8TZjQ+BdhMnkfZxii/FmeDjEnAW5+QoTkZBfAZG3jsigPxmzn8iUTdM/HDsCAs9Yd3ihL5cvpIHRiS+KyJ2ZNXXw7cY7U3GnP1zk/whJvdR8i9FyeOvRPnA5PZGWXxkFG25f/fcMyn4t5i814rfYTGJHtL732FwHP4fBmejHulmXe+BWRFvVztWrQ2hjpg64AEGMTZmMkaciIFNkYypQTmwGKIYh2wCCdExCOrJCARMgPiYAAcv8QS/ItevCcSoiybHvnFBRBALYA6UIkAoAgdsCHJcIEccQ4xCZJ2RWZFAlOBATCBCBwnSxgQbAuVwjMY5CAaCZNkYeAIJhzHBIosILZMJ+Y5KOSQhJCSKuIiY6PEQJSYgKBqs8Loyep/clSrq/a64POqybu1J7rJ13r/a6ow7r7LbF2e5VtLY/h2Z8DA6HHn+cDo5ES9mhUxVgfeGGyoDgI0sqIOd/kVVWuhLgPu5ZSPrlc7MjbIWpQx8lBt5La3avUJu0zvoTLuDeqbarNC5luWvWCOkghRCf247WOrPbRF2lrOqavKbO4OFA7vfVVMRfkTD6ckngLtuSSTD8PhDCJRJKvloeiqEZ+/dV5Ym3rTa7EOTO2X6XC4baqcu+zR4Y15UxWGqrnRpX8rato27hKELDQV1VS4L5XLrthyvM9ltWu1ufFKF1/XhrsZR6B1Ily+romoAG5LHMTJ0NPXU8ZBne67Q8YSOI+x3Sef7dTbljsPR1FPHhdvuXesiZX2YLOzNaONgBJUfF5mrGboctaW21/3A6uz2ECnxv2vXKZZbJ3aqkv1LKmejswKb3aqmVIUvoxJ3sq1a4+t6X5sXs9ao99Kursr8Z7XEhnwvCRMtqvasB49zlek1Cvr5LnWStvUXdNXP5mrZqD7Cwt16fWLdanhc1PemnapXTbV+U24+YM2cuTob9fHMTNbomkoTUgTpW3WovlwbiRCfH8th8AajyAhuMJGWkhiAbO2qatzFFpsW42Hwkyxb2WjESaxHathd3ShDPxH8rgBqRWDZEfo83l3CHB7v/ngcDuNLGAC/hJEbcxrF8APs4EeILp0LqlBrvB+DdfW9aEvnzH6zF+7uTbsKVfoRMemsGI62C9e/Uu8gi3ol6Xre5bOQd6o5ybBT97bKz/OO2+qSgzBT+wKrlfKlabuOhBrVuYY+cubQNxah8BYv+8ZdmfZC9PJa57lyOO+L1KfC7ct6LcscSncGvyfcCA7YL0PKi4+5tf3MlVfSid7LrAOffdqu/iath9I+zirjHmsc7bDmv8wt+3JuXZMY2HmjcDcPBlhpAXzyP3P9jzoKlxD05LTys2ftdZz40XFHuPOp+4H67E9QSwcIifESE6UFAABQDwAAUEsBAhQAFAAIAAgAh7A1QtY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACHsDVCifESE6UFAABQDwAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADwGAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
Här kommer text om gränsvärden.
Upplägget.
Motivering.
Omgivningar.
Intervall
Om vi tänker oss alla tal mellan två tal a och b så kallas det ett intervall. Det finns intervall av tre typer. Öppna intervall, slutna intervall och halvöppna intervall (se figurer). Här gör man så att man ritar öppna cirklar när punkten inte ingår i intervallet och fyllda cirklar när det ingår. Intervallet [math]\displaystyle{ ]1 ,4[ }[/math] är alltså ett öppet intervall dvs 1<x<4. Det indikeras av att hakparenteserna inte sluter om.
På samma sätt är [math]\displaystyle{ [0.5 , 5] }[/math] slutet.[math]\displaystyle{ ( 0.5\le x\le5 ) }[/math] och de två sista intervallen halvöppna.
Alltså
Definition |
---|
Ett öppet intervall ]a,b[ består av alla tal x mellan a och b utom a och b ; a<x<b |
Uppgift
|
Rita tallinjer och lägg in intervallen 2<x≤3 ; 4<x<6 ; 1≤x≤1.1
Du kan rita i Geogebra. Du kan också rita på eget papper eller trycka ut detta papper |
Facit: (klicka expandera till höger)
Uppgift |
---|
lägg också in intervallet nedan på en ytterligare tallinje
|
Oändlikhetsymbolen [math]\displaystyle{ \infty }[/math] kommer att förklaras mer senare.
Inre punkt i ett intervall
Om en punkt A finns inne i ett intervall kallas den inre punkt i till intervallet.
plats för figur
Definition |
---|
En punkt A som ligger ligger helt inne i ett intervall kallas inre punkt till intervallet.
|
Uppgift |
---|
Vilket eller vilka av talen [math]\displaystyle{ 1 ; 1.414 ; \sqrt{2} ; 3 ; \pi }[/math] är inre punkter till intervallen
|
Facit: (klicka expandera till höger)
- 1 [math]\displaystyle{ \sqrt{2}, 3 }[/math] därför att 1.414 ingår inte (öppet) och [math]\displaystyle{ \pi }[/math] är inte inre punkt! det är endast en (kant)punkt ett slutet intervall
- 2 3 och [math]\displaystyle{ \pi }[/math]
Omgivning
Definition |
---|
Om en punkt A är inre punkt till ett öppet intervall U kallas U en omgivning till A |
Ofta kommer vi att använda symmetriska omgivningar till en punkt som [math]\displaystyle{ A-\epsilon\lt A\lt A+\epsilon }[/math]
där [math]\displaystyle{ \epsilon }[/math] är ett godtyckligt positivt tal > 0 (ofta litet) tal. Det kan också skrivas [math]\displaystyle{ ]A-\epsilon, A+\epsilon[ }[/math].
Uppgift |
---|
Uppgifter på omgivningar |
Punkterade omgivningar
Ibland undantar man A från själva omgivningen till A då kallas det en punkterad.
Definition |
---|
De sammanslagna intervallen [math]\displaystyle{ P_-= \rm{A-a\lt x\lt A} }[/math] och [math]\displaystyle{ P_+=\rm{A\lt x\lt A+b} }[/math] kallas en punkterad omgivning P till A
Det kan också skrivas så här: P är alla x som uppfyller [math]\displaystyle{ ]a,A[ och ]A,b[ }[/math] där a<A och b>A |
plats för figur
Uppgift |
---|
uppgifter punkterade omgivningar |
Vänster och höger omgivningar
Oegentliga gränsvärden
Gränsvärden.
Alternativa definitioner.
Facit till vissa uppgifter
GeoGebra
Tangent och sekant
<ggb_applet width="1368" height="621" version="4.0" ggbBase64="UEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZwHiBx34iVBORw0KGgoAAAANSUhEUgAAAMgAAABmCAYAAACOTt4AAAAHqUlEQVR42u2dsWsUWRzHF0mZxs5SUoQlZUA0bIpoEUihf0EqsfDAIoKFhYEUgilCkJDCwiKFhYUcsgbWQkgghUWQQAznHuHOvQjnkhThLnd4ukt+53cnL85OZndmd9/Mvvfm+4Fhk/h23Lczn3m/33tv3uQkAY6Pj6VUKjVeCbGZXBI73dvbk+3t7cYrIRQkhJ2dHX67hIJQEEJBKAihIBSEEApCSJqC5HK5xqbI5/MUhFCQoCBqq1QqFIRQkFYUCgUKQigIcxBCQSgIoSAUhBAKQhrMzc3J6uqqbG29O/3bwsJCo4Pl4OCg8fvw8HDzSXLSS+nvjPH/DtR7KQgFsZrl5eXG67ev/zUJMDIyIkNDQ02CbG5uNgly5coVOXfuXKgg6r0UhIJYzW+7v8rB/p9y9NchvwwKQkifBQmOpM/OzlIQgymXy7K+vi6fPn3il5GmIGqrVquNg0BBzGRxcbFxfCoffw9NvINJuT8Bz2Kyrj3EmpycZAtiMMWXP0vt21f595+/zwgRTMoHBgaaEvAsJuvaBSkWixTEEUZHRxli6d5hvV6nIISCREFBCAWhIISCUBBCQSgIIRSEkJQFCQ4yDQ4OUhBCQYKC+LdarUZBCAVhiEUoCAUhFISCEEJBCKEghFAQQigIIRSEEApCCAVpmnZCQeLz+bPIxobI8+dYtwqLu4k8eCAyM+P9fP++yL173s8LCyIrKyJrayK7uyK1Gr8/6wTBRkHC2dryJMBJDwmw4ffXr0XevxeJWmwEayJADAjy9OmPfWB/kAd/Pzri98wQyxI+fhR58uSHEC9eREvQLYeHnmgPH3r/H17fvuUxoCCGgSv8/LwXFkGOfi1BhZYEQio5EcYRCtK3kxEhj5LCtOWhvnwRefnS+3xoWbhuHAVJrbVA8owNOYQNQN7Hjz1ZkLMQCpJIso0TDAm2rUkxesDQqty5472yR4yC9Azi+Fu3vK5Wl04otCQu1ouCpNxiuH4CQRSMv6BFIRQkEgziqcQ7S1fWN288UU6W66UgvTA2Nnb68/j4uBOCQAYMvKHH5zCjz5rBd4CeOXQTO/qEtXQEuXz5srezXE5KpZL1giDMQOL64QNDDIALBCSBLBQkwyEWTgSEU8+eUYowEG7dvp2tCwcFOUGNOGc1lOgk7MIYCmYKZCEny7wgqtVYXeXJ3wloRdCa2DI4SkG6QPXUsNXovjVBRwZaFArikCA4sJgawlxDb26CLnEKYrkgmDuFg4lXog9Mt0Goiun2FMRSQZCIY9o3p1IkB2YaYOzIle84E4LgYEEMTp9IByTuyO1cCLmcFwQHiSFVf0IuSGL7HY3ap5rk83ljBMHBwUHiPdr9Az1cCLsyLYh/qkmlUjFCEPRQYTCL9B90p2MQ1sa8RHuIVSgUtAiyErjs3Lx5UyYmJpr+fSXk0qTyDdd6U2xH9R7aNuZkbA4yNTUl09PTp79DDv/f8DO2YNzLSYZm5yW2HR9jBUHroGSAHNj8fwu2IFhex9XBKpdAC49wC2EXBUkJjORikIrjG/aAG9BsSN6tF+TSpSm5cWOJZ5yFYFzK9I4UqwXBDTzXrt3+HtuyH9dW0BVvcutvrSC48nCKuhughwvJu4nXOesEUd24XEbTLdC5AklM62TRPpI+OzubmCBq+gK7cd1EdQObNC1I+0h6tVqVcrmsXRB8eVjYjN24boMIwaSxEu0h1uTkpPYWxNTmlyQnCW5oMyGM1i5IsVjUKgikQMvBjqrsAUn6vbi2dkHq9bo2QdDMouXgAGB2weLguNHNGUEUvQpCOYgJkhgpCGJPl27bJL2DUXeIknlBIAfGOQgJglYkbUmMEoRyENMkMUYQTH92eQEyog9cSNOa5GiEIP1oOon9kqQRbWifajI4ONiRIJSDmCyJ9qkm2Gq1WixBKAcxXZK+hViUg9ggSV8EoRzEFklSF4RykCQlwQCztYJQDpI0mKKksws4NUEoB7FRklQEwTwarqxObJREuyBqTEQJkpYcw8PDPCuIdkm0C6LGRCBImi0HBSE6Jdnb25Pj42PJ7e/vf8/+NxondJwtbtmZmTVZWvpD6z7Dyl24cKFxm6/OffZSLsv7NLU+r17tyt271Y72ub29LaVSyWtBIElc4pRFq/Ho0S9a99mqHJ5HgoUidO6zl3JZ3qfJ9fG3JHH2edqCYGpI2LI9Z2KxQDk15ypMDmz+JN3/vlY5S7t9Bsu1+oxhZdUDfaLKjY+Pt49FT6bRdFKmVX2C5drVJ1i2VX2C5aLqE/V9h5WJKu//93Z18pdrd3z85eLU5+LFi5Hh1vnz8x3VP+fPG/zL9rTLL/xzrsLkCPZiqfd1s8+wcu0+Y7CseqBPVDk0p3FO/naS+Mu0q0+wTLv6BMu2qk+wXFR91HtqEbdtqjJRxydYNqpOqly74+MvF6c+169fjyxz9epPjZYkTn1Ck3S1bE+nBBPyJJce7eQzqgf6mIxr9emkTv2oTyeJ+xlB1LI9vciRtCDdfEaTca0+NtQJksR5LNwZQdSyPb3IkbQgnX5G03GtPrbUKc7KOT2Ng+AhKK3GOUx6Tjoh3UrStSBRaxVREOKCJLkk5KAgxBVJcknIQUGIK5LkkpCDghBXJPkfc7+2AYbjfKYAAAAASUVORK5CYIJQSwcIPWWxB+cHAADiBwAAUEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIACutLEEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1szVlrb9s4Fv3c+RWEBli0QGyLb6njdJAUGGyBzANIdzHYLwtaom1NZEkr0Y49mB+/l6Rsy49k7MQtCiShJF7y8p5zX1KGPy5nOVrousnK4jrA/TBAukjKNCsm18HcjHtR8OOH74YTXU70qFZoXNYzZa4DZiWz9DqQWsWSRrpHaSJ7jOu4F2kW9gRhNIxliKWOAoSWTfa+KH9RM91UKtH3yVTP1F2ZKOMUT42p3g8Gj4+P/bWqfllPBpPJqL9s0gDBMYvmOmgv3sN2O4seqRMnYYgHv/9857fvZUVjVJHoAFkT5tmH794MH7MiLR/RY5aaKRhMBZxuqrPJFIySkgZoYKUqQKTSickWuoG1nVtntJlVgRNThZ1/469QvrEnQGm2yFJdXwdhH9MIcxnFTII2RjAJUFlnujCtMG6VDtbbDReZfvT72iunkgXIlGU+UnZL9NdfiIQkRFd2wH4gMAjhp0L/LKR+IH5gfuBehvnlzIsyL8O8DAMgFlmTjXJ9HYxV3gCGWTGugb/NfWNWuXbnaR9szcdXYFOT/QnCNARH8aDD8zC8sr8CfpmdGOwaiTtaTT0/U+laJcZCnq6TvEYn3eiM4kOVhD9hpngGXX+Gk+zkHWhBlftxvwcaKTlDo79/nULBvoqJw8E6VIZtdKBmamVbJo2eNTZeaIx4bN0eIw6xISR4OUc4hkESBNGAMEeMwy2OkLCjRFTCBEMURcjKYYpccPAI/jDpNhOIw2b2qYSYRBgUMcQpwi6mGIJIQi4uIUYJBQnOEYdFVj0mdgsqEBNwRyPE4Iw2JCUGQQoL4R7UE0QxonYxlogIJOx+mNlQF5E9OmxJkAiRwHZDiGqIaB/NIB8haq0RLVxZUc3NDkTJLF1fmrLacAHSkI+2ac/np52s+GaYq5HOoVLcWyYRWqjcRoRTNC4Lg1oSSeifTWpVTbOkudfGwKoG/aEW6k4ZvfwJpJu1bieblEXzW12aj2U+nxUNQkmZh5szlznuXJPNqeGGdiZYd4J3JkTnWh7VW8IMmjca9Jd1sxZXafrJSmxTAyD5a5GvbmutHqoy2zVjOHBFZ6jnSZ6lmSr+Dc5qtVhc0KYGuXS1rkE8luuTlHV6v2rAhdHyP7oubbUifS4oCSmnJCLCVpKVn+Ik7kseEhrFHEuXv5tE5S4Bsz4PYxxFUopIMA6+sDo+J7xmvdgwpJZ6Y/yktoHdGm5vPjW3Zb595Mz/qCozr133AEeorU03xSTXzkVcYENpTh5G5fLeBzj1e31eVXDXOspo4mBHkBoI5yDQjiM/Ohl7so1U6GRCJ7FxtizdzOOYOAk3jvzopMB7/dFaS/HaTByu1WSNS2hhsBM2zvVtnZ8Xmblb35gsedhaauV/mc9GeuNAu1viC205HOw52PBB14XOW38GJuflvPHh2XH1VCfZDG79RAuIsmT9Cw7gn6Z6Uuv1uXPXl3m43GzY9dSDx26rn+py9qlYfAZP2DvAcLA+5bBJ6qyyDodGUAMe9Nan0qxRUELS7jobgGB6YksFwGNc4QZl0FABu2pupmXtOjDILDC6pq+sH5qp1uazXhqkRuUCZv7xPQ5/cH/AJ3RuiXD762VV68Y2xJ4SBMqhK17a5Ph2+Q5dQ1or4MIL53oGipFx/jueF+5YGzLHTr1lDZWjPyB17pHdoQPmj/qz83yVV1Nle8kW21ytdL2Dttvw5zLd5wAodkBBHqlcMwpOVGnt3c+0UYcq2NAFbedA29gwkLUfoDUFnxOdRfbin1maalexvSN6OBxLs5kqUlS4iv+bzQ3BtgIpyOXLGwiE1va5WT9N/Ebt8gOEXZLZwJf8DbzboHsK3fALY4uPY+tCpkFLu4rFMmaEhTimDEeSQ+e08sdBf/pXMv9KYi23SXOnzvqne7F3CR7MOTyYk3mA4E0zD5otna3w5CmScEi+DZpwn/AYxwIzxiISYhZ9QZbuIPL2SEoAAOh5Vke5Us9zZQN5Q4U6pGrdfp+ckl7BxhbRnvvY0MHwWCQ8nYjIc4kIepj/FX5J42tnNqvyLMnM2cCb54AfnQH86JsF/ohvf2XcPxUGOhrAZA/8sQdfwQBN/tsjHnKF4CE0r9DCYmiJCROSiHcHRN2ck81uXlRV7BvvxA8jP5xI1a/jcaONY8Z+fwJievwok/T02nEAyYuzFOiDlt6mT/fsbXI1fpu8e/cqPkctn4eOZ+mEF5iIMbilMQ8jGR+yeXsOm7eXr02XoJq3VGN6GtdPFqB9uC7GtAGmzUuZVp7p473Fx3P4+/iyFvrFHD2TOZ+Kt95XawNuPKy3B5CmZ1Si9HREz23XrFdfrE7ZNMYI4TSKOKQwEorW5SG3wVOY40xGRBKHPYhjIhknWMaSRJTE5Lk6xr5EHfvsX0OPkzY+IE2fQZp+LWnTQ9LWH1cu2VyE/UhGXEgsIs7CmEnsSMNthNhQgfBhJBZC8EiIOL4cSfCOfgJJ93lZ7cdVesDN7HluivlM11mygX/mNgRM5mtk+oKQmFNsa3AkaNw2sxctRC7egECODxjEJzJ48CHs1F7vPID1IcD/xWdCDAsOQD5wtleCfCRKvhWQd9EZlWWu1fZL02Qfm05C+DofSLbNjSS+uZHk2aTR7TbudaLANlfyzrJ7+g3ajcPns2XX8LZkHLV80P3U6f6d0P5v/MP/AVBLBwgkotXC0gcAALgfAABQSwECFAAUAAgACAArrSxBPWWxB+cHAADiBwAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1BLAQIUABQACAAIACutLEHWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAACsIAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgAK60sQSSi1cLSBwAAuB8AAAwAAAAAAAAAAAAAAAAAiAgAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAwADAMIAAACUEAAAAAA=" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />
Övning gränsvärden
<ggb_applet width="1368" height="621" version="4.0" ggbBase64="UEsDBBQACAAIAKqmQUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ01VeziU2xoffLPnQ/hmmAgzPoPttkWo9pD4zHhmhl3uU6abbJV4UiGkqWO+wqDaoo1tjFvtkCjNOGnc2h23yiWXstnobEIRdu6X6Hzs5znnrGet9a53/d71/t5n/fF7Ez32s1SUtJVwOJwKh830wmwztsLBb7B9wHefCQ5HcOcwEZ/ovklxnZvOWd2mWccly+4XdIrGXaXUdU2KSnc+w5SiFBmUzEjI89K1k/LthRFBO+JUnYE4VQqt1T8/IH6r9jn2s/w8/ix/te3ilTuDI00DRov9AxN4VkDSrqjF6qlZfk4uPe14cEXWaVtt8aJ7rnaszvvH/BkCgZAxTQQgAMEh0H9NPQnJcbAZ/ZItLwcOmTaLdjd2T2iAThAgB2zjpqjpXS/mmkKxcA7qY9YmFwtT0U+T2yQShgAHfNZgLifMQDjgRSa8OO39mmh4Fx5X4Bw6ld92+ser6xRAsbmvL8t0a/K9gdCoK/tFcHuuzuxa1Y5fSXgKIm/l4LC2+HHl6/DOfeiX9TMtd1iN1dHHWz6aboCP6ur+MTImBWn0nD35wXEwcRQ+TQToUGAgWuSvT4DZSgZgGNzs9KCsbGX9j5WVGDM8ogpsy+x0EZ3cPpbN25s7XW2Z8UrcI5FIfBRRXZCkGOf8p2taWaZYvDM5OfkerzQrpiY0PaNktMt4rGbVT9JbzVdZHVwT2Zn97PphUc9xSp+AMhklb2Sfe58/R+l2drIvdA5jkExPTx9vFsDDbp1p1gU9pVwK5Y3pb6D1XiTVyr/cfqzISoBHGk2bcx0bHzwwNNZ/aMPSwnzhowqjVyUVSkgBQ401kjv9zt68v0j3Q8wpXkpxcTETHOq57UY2rwRForaaqb2GrNLIeTt15DvNuwccCcR6vSOW5EhyzBHHRQ8yr/TnhASfcnnFgK7oB1fEseDQUULh65K/qnwNfNOqafJ0NhuJOE6OP5PB8LH5535PyUfbhpD6lLIb5ld51LorlNbLjJSQolC7oKUb3qqFz2y9L52NUJOpn6Rou8wtS3YYGw+vUsEwFYfElydWR9jJcMz4RFbIVLUOcW5lSpz2Q5ODFw7Z8zz6cHhlAiU6U6rL7OGqnJXVlm15qTPntLLc1TZ9HabWd6SSA33KWonMY/v+FXm0NqJsbLip7dLl9LvPEuCtICmiWWaBBnmCRu0kJ9qHwxpGc36dmtedUjLxija5BjfN0msLwxSeGHFYJAMF9BrE3H0M33OS3khG3vtHnRJRqePhWk3zCOSG38Zy42rYyN3ZyrRwPVb7PfE38tB8SKHEogQWuiOeq1WtYVsONazMv7K/xbX9MHWZ68hIqjoAGSoh9UXx2Ux6QvUxoENj+MaNG6+KG6f4mk98OYnSAiMJiVi/+j78qc5sN+uXIlbNM2dHZGrA/Bf7qPHRqQGvMX73Ns1FEzmAwwE83zDmzx8a0bqbNL8wWfz08qWG7MffW6JMC+FLHx+JMqvC1j0tUA4ZIjGLckJLdEEULlcuMNzV0tzhaTneyIeARF9IJU/Z7tx5XXMqCYEMuQjKlTRW6JqgMPsTGpTZYFXqN3zYPMNsK1q/Xai0kieOHz7KztpMROvvPbPrBQIgUAjgmX+M99hN9VaFiw5U74Vc++azqV65iyoNRA8aCT2SuYt7hJW7H+qjsNAXDVpKvM8jPY8XizEReICVNvvooPTHP2zuHwStZertI9t/glN/t0pAMZK3LpAI0wIEwjAUZm6cNmZ+UhwMOv/tOGFYLAZtSsb/Bab81dLeLhoZOeH6WVj0JvjbniBbO7xRctPbt9yCuq/9/dm9g4Ntn9Z05surqtwAwSdrGxv12qRfl0kjYb0ayS5doU8ID6vW1mr4ex354umAm43LKerb0ZZp0ICduWyItLkDT3NozWvq2BCs16XFTlSMy3T19NTWLqWlpRms5tAndTqmKy9M6M2Ov6kTtx6QtlfsOuKp4Nq5+ygnBlhemDxU6EFZ6J2742ECkMJuu4/6GH0s5ZbYEA55saHJd8Z+0hMZGR59w6HhXX63Xo+2UiVeDZ1rCsm8cmmlgBrMM2NVaT+tuiN7mMqyuN2nDCFwODrHmKkUsWRDJrS1JQGMqWbEWSvT44aviwy2oE4BwNObM5pnBPca+iIjN5RXc8Sa5CLqY/VqXYVTlBBZeEaCmthQD9Nlvof37FVCm3woKA8OCUjRRrPHZ9QBQbfS0OPaKWm0PggL1Uj1IdM3c4ypAd+RYTbN4MUglbiRs+Kcis2CMgJ7o0FbMnlPNngIF8yCpTtQHLqUZ2LN/skedfoW33GtDOFVQIC1qVD0yGAjXxKcZLhJF18QFKq4Ga0/U5N6ARD8oFwguF4T00MErC2E9/14F/FYiTE+ko3cCV4vMk92DdcrlP0bBFPNpEtX3/GJNDDwKIQH6/YACDyLzr1kbEQuRWnRMJ7zbwkLWew47HM0E2WjiTB2RQge9Q233GTcKcVCA4VMyv96lHN+60UpRw2Do/PIf17YfND31cMTQPy11hU8M8Rz2b9zIazD4jgu+5llzv7ofwBQSwcIj8NZeGwHAACIBwAAUEsDBBQACAAIAKumQUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACACrpkFBAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVZbY/bNhL+nP6KgT4ULbC2RYp6cepNkd1D0QDbJsDmDsEdDgUl0Ta7sqSKtNcu+uNvSEq2/BJn3W3aK5ANJXLImXlm5uFod/LtelHASjRKVuW1R4a+B6LMqlyWs2tvqaeDxPv21ReTmahmIm04TKtmwfW1x4ykzK89waJkHPBsMM4iPmA8JoNxItggTbMojVg0DvzQA1gr+bKsfuQLoWqeiftsLhb8rsq4tornWtcvR6PHx8dhp2pYNbPRbJYO1yr3AM0s1bXXPrzE4/Y2PQZWnPo+GX344c4dP5Cl0rzMhAfGhaV89cWLyaMs8+oRHmWu5+hwECUezIWczdGpOA48GBmpGhGpRablSijc23u1TutF7VkxXpr1F+4Jiq0/HuRyJXPRXHv+kPpjP2IBjVkSBolPqAdVI0WpW2HSKh11x01WUjy6c82TVck80FVVpNwcCb/9BtSnPlyZgbiB4hBFbsl3c37gBuoG5obQyTC3nTlR5mSYk2EIxEoqmRbi2pvyQiGGspw2GL/tu9KbQlh72omd++QKfVLyVxQOfEwUBzrO+/6V+Ynwh5mF0b6TpKdVN8sLlXYqiR9foJM+R2fQ6aRJdKyShh9xMzqDrrPhSX6GPTdRlf1nf440BvQCje79eQoj9hlcJFdxsq9xMupKZdJWB6i5kW0jqcVCmXoJxhCOTdoTCLE2ohizPAQyxiGmgNUAJAQW4itJIDJjDEGMCwwCSMDIkQBscYQJ/sdie1gEIR5mZmOsSSCoiEEYALE1xQArCWxdYo3SACXCEELcZNQTao4IImARvgUJMLTRlGRMUDDAjfiO6ikEBAKzmcRAI4jMeYSZUo8SYzoeSSHyISLmQKxqrGhXzSifQGC8iVq4ZFkv9R5E2SLvHnVVb2OB0shHO9pz/LTHii8mBU9FgTfFvYkkwIoXpiKsomlVauiCSN3crOH1XGbqXmiNuxT8zFf8jmux/g6lVafbymZVqd41lb6tiuWiVABZVfhbm6uC9J7p1mp8CXoLrL8Q9hai3nN8Um+FK7BUAvVXjerEeZ6/MRI7akAk35bF5qYR/KGu5L4bk5G9dCZimRUyl7z8Fyar0WJwge0dZOmqu4MiMu4sqZr8fqMwhWH9b9FUiC0jwzBkIQ2IjyWAhO7Bpl1KwiEbExKOI5LEoY/1rjJuii8Oh5RFQRj6cUKQkfA23pxeQlqymsVqGyG+FlvnZ40p7NZx8/JG3VTFbsq6f8trvWxs94Dc2BifXpezQtgUsYWNV3P2kFbre5cbgTvr/abGN98ZkM4s7IDUQEO0d9aOqRutjLFsK+VbGd9K+F2yyXy7TsbUStgxdaOVwux1prWeks5N4ndqpLKE5nt7ZWNT39zzy1Lqu+5Fy+xh56mR/3G5SMU2gfaPJH/QkZPRQYJNHkRTiqLNZ4zksloqV569VM9FJhf46hZaQLgJ1j/RADebi1kjOrsL25c5uOyq38/Uo2l71HdNtXhTrt5jJhwYMBl1Vk5U1sjaJBykeAc8iF1O5VJxvELy/j5TgOh6Zq4KhEcbaO7kAk1+13CcNf0eX+p51dg+DPkFR7tvseBlDqW9g96ZbPV2nMiRXdavMTTO+Gqpu9kPztp2uynnQiywewNtc9am/TZ6H+yRJkxQpT8jVx5Ed5cGuPyR/AVe1HNuOscWyYJvRLOHrT3t7XSqhIb1tTdAft+YXqu3+kOVH8YDw21BQ06pXTrVQrhEdL7gQ43KbPnukSIGWBlFwZBR0zP7cUCxk42cXmMo/Oo+H1z7bDAxBb53J7jZgzzB5HVwHkXoDmvzIEAfEBtk/s3JOPHzcTKlvg0DPw5T14Q4gZ73zw/UUSh2gA7sJ1cPw2OED4hK4xX6gN8JyrauuuVN+/C9zHNh2yfH47+Uboty/CEXdSEzqc/D/mZ6WBXwZaG/AeKwJzCCNT5SI/kf4tZaEXYF6ytQvzT6q/XX/z0K0PR8gKbL0tb0LgafqKUnxMheG783SicxZ+cwP4NqqZGz0YcDcKcOVe4Q/eoo+tgZHk59fQTszSUMdfOp1D9NUaahn7khdcPlLEUDm+qD8dNq4zTZnJj9M6jnxgXq9BWRXkA96WennvBp8Pot85CWeQZ/PfV8pEgc31v80yPsby9J/tvPfD2HpxM/pi7xycnI0I9F5s9I9XsxM/OnL9qb42boJ3Ieb9Wet22IcMOzafwPyfcT+b3XvJBh7IdxOGZjmkR+EsRPSX96ef5bPAvTZG3zHW+94/78QYjafBa9Ld83vFTmN69Optf3XxTUlsJuj4KaXxbS/P8koF2ZnArs3z6g51js9bNZ7FN90dkITOVa5PuW98PC2rCwT3wVhKf5il6CxD/+FkjQ34fEEXOP+p++9tdL7d9KXv0PUEsHCP1v0Wn7BgAAyBkAAFBLAQIUABQACAAIAKqmQUGPw1l4bAcAAIgHAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAq6ZBQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAsAcAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACrpkFB/W/RafsGAADIGQAADAAAAAAAAAAAAAAAAAAOCAAAZ2VvZ2VicmEueG1sUEsFBgAAAAADAAMAwgAAAEMPAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />
Arean mellan kurvorna
<ggb_applet width="872" height="474" version="4.2" ggbBase64="UEsDBBQACAAIAKM4mUEAAAAAAAAAAAAAAAAgAAAAL2dlb2dlYnJhL2d1aS9pbWFnZXMvZ28tbmV4dC5wbmcBPgLB/YlQTkcNChoKAAAADUlIRFIAAAAQAAAAEAgGAAAAH/P/YQAAAgVJREFUeNpjYMACbEpYjlqVsKYykAusiln+R/Zof7MqYVntkMXAQ5YBpx9u/9+0Ouon0CUPLQvZdEk24Nzj3f8P31n9f8mxln/OVQJfcXrJqpTlBUgDMrYuY/l++sG2/zOP5P/feGni/+1X5vyP7zf8Zl3CsgbDSyANB24v/3/ozqr/R++u/X/s3vr/x+9tAOOJB1P+9x9M/D/3RPH/3Tfn/29cHfULw0sgA/beXPy/dWfI/47dEf+790T/794b879nX8z/3oNAfCjqf9eh0P89hyP+r7/S83/O4ap/bjUiCC+BDNh5fc7/kvXW//PWGP/PWKn9P3uN/v+Kbbb/m/Z5/u88HPC/44jv/5ZDnv8b9rn8n30q9/+qc53/4/oNvlmVMs8FG7D4VN1/v1lscBy0gP1/+HLO/9HruP/Hb+L7n7ZD/H/OLvn/+bvU/vceC/0/72TZ/7BO9a9YDfCfw/Y/ZAnH/6g13P/jNvP+T9rJ9z9lD///nP0y/+dcSv/fvTv2n1MVH6oXQAbA8JIzdf+XX6z/v+pq4//E7UDb9wv8rz9t8n/FrYr/hcvsflqXoQcilmi0qWD5vvpa4/+UXYL/J10O+r/0evH/4G65r9blWKIRV0Jafb3x/4KrOf+7D0b8s6/k+kpS3gAZsOxy9f+shWY/bMrITMq+LRJfbcrIzEykZGcAL/RHvVgEqlEAAAAASUVORK5CYIJQSwcI5dRmDEMCAAA+AgAAUEsDBBQACAAIAKM4mUEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfdGh1bWJuYWlsLnBuZ1VXZzQcTBe2ylqxG6utziK8vEpkRX2VJbqQ6L2vXlcNsawSRI9OkOgSJdFLgugkJFaJTvQarLZEwrfv9/365pyZOXPmzp1z5z5n7vM8f6yrDrnFeouEhASiqaGiT5yHiB0NAhLH1IJ9XhIS6AtNFSXDJ3M/C6gNGExggwaZ734wzbytWazR+m7oxstGn96a1+dhHzmw7UQ/rNZSfzAQL7Tn8OXOqhDPBfIOkMFQZYObOh77mgcOJyUljTwO62JgscO+gK+GX1nua9JMkEHAY+J+10YtzE7tFd5By8v5T7/JYA79bM0qa2tv6+npPTlep7IBwwrXtG2pKDNHRh4aGhsfU9jdg7u1h/2RtSGHkfVg3zNDgdH9WDG4MAep7+YIi4qKirRlUYg4/NxESSmitXl0dHRtSeqvv5z1Bw8ODgbKtLNHbkwMDeGSkjDFm98N/c786VT37t1rDb9ROFhoixoa0qhLkkQO+aXngFITGsr6fb/EAKsKSkpKylrY+ihoy6r3s6dlRQxt3kqR2YcHP3360sbZ0bGoq4urxXt5oMaiBQqD8S95u7n17ExU1HktyjIwMSUQOOVDolUTYM89vZc+Cp6XXfnvTgqCIRCzfW9tDAYz0+CcchlOGnH+T/j1x35nk1rL7ib3aR/8qurK50caGsiAgCY1ZKmWtiJZ6ntSIHBbmLuArzTvwa8dCk7F5pl8jdCZpdsGLgIPa2rEMJd8D+lqyjMYcsDAnONjFdUzQ06FUIHdUeyMjbW1NYiGhqlrKCkpyfTjkzqX/HXZ5VZ0ycXUUp0DZaECJp6M8nYOgReazC7D03y5Ess1NjVF8ejRI4+lj2ampBvXpXJvrCjIyeOOf3STnRAEutI/HZ+dMRIsL1naDls8ZiPHx/XR7JF51u5kKgqfVnp7w8vSM76mHUVHcyBt7hjpvs0VECQnfbFzSLPzmcTQzC308x9//nZbQ29g3/Vce0DVtr2RkdHzWuE/uxXl5faEg8UjPF4pMLAZu7I+nC795Aju6+fXH3ZFOGRStJxv9qRPyvM/3zez26G6tXHdW5ALRKFQceOE6qSmpqbu3t4H/i9FLVvhzX/NgEAbzoaKuyEvGIWEhVV8fI4qCRYc0J07KlIJ1cBcyZ07z4y43ZWtRN7YG5LDx++SJnNR3knAj1ibH2zZYh8z/Vho81uY+ylQz3z8Tlbzqz6zkIXSdej6dfrUmrM8969O3ABXM+UOAqSlWe5VSg5H9RQWYHnjREDucx9NUQquY+n5+ftiz3ZfysY4OiBNAwF9Zv3Y9/ukoEElU1GquAGxuAD2PsAt4oqeNJoEvgUJRkvEKKnIcQvucIOB6Y2vNIPu0SRHvd8HDi119GY53ISN2kFXIG8rxXYk1rutq+/dnz1NPj4+dlVs/p6RNjdnjsvkb+n4rYhRWDq5R6YM4/n71tHJBDuQFiJyf7J0OpWSjGe41VfmdZrWPURHVKT72dmZ8TvBn1GsLPKOrmLMwvoaAo5RzUX+kHg1A/NYhAiqNwbCU6CSK1kcuI8vzXLREaSCQJ7hXBiW1eerzRqAjo6Oq+Ky/P3GAkGJ1oODgwlDigUplltpaXT4ThboDvN4NqmUl8vtqN90lGh4Gx28vKECh+//6+0rwYl/BBaLW1pMVOoy32000sT7Gzw4IRBaNLiLTiHxvvQP51u8mZIMcmE8FUECE2pqnE+rJ+maGulEBPlqampWJTBcZZ/2F9ro0Wj0pqcASHOrwX1aFM2uOIwYuzq+Jqf0/IaGOlOUtrFgvizi9NKqftUR4z0ucbFUs2J0Ozp2b6tL3Uqpt6anpxfR11gHqiaJCwgMgRPzYcrQx7LPEZ6o9bpBLRGWXONiibLocatKXRRkyJ6Pj6+oslKDXUhM7LEpM6mKgvql5brshMM0Skf69mop9rRDhgkTFD+ml6W42ayewilR4SdgI3Rm6NDcpzKhlTE/w9uE8vEZy9dHmMurV1Fy2BDQqXX2MHCc1vTu3rsxDA+0PNlYB/v+/pM6fh6Z28qcpLsm+jb+7Q4w8BBI+vxA7VsWhPQ2EJVHUrdhBP0WpYEZfhB7+3n3/EpvbIW8k523jK/koa0ed4ixcMSbmheAXF2kRzBjJV7/QblSttxFnldKepV56sDe80rtf5xFITjuVsKx92NajujjVodN/dDxWItLQzL7L1XIa2+3Pob8or+G9X+yg+2QanX+UqK5NeSMa69uol+uhG0Ldznqxfee+wq9cvv3hgx06puct+kAHFCDoJ4wFowAnamygOMKgTsGHJQ4ugafAGTifMvrk65lEHNtecw9eAhpn9mGAJaZ7Lz7qGXDiXkmchuc+iY5akQF3KdH4iqzSbnWE7wt/EWq1wfvK0aGWMQmfu9/sQZnmKsw48nnBq6CsOCpydcnTdm2Al+bsEVNwrGAXC/kUICQc1ByBjvlzvY29FIumZMMDUK2t9uGXOlMql2jKMgsUllIVHIXZRAN+jv9+k6msvWU2tNYDZ/T33jHU9hGkazMwi1gUw/24T14Ro8w0ddIdQZAz0kPATcovQ47FbUmd+i5iSZoQaDNcHESUL+Ch6OC7sYJHBzHxy5PvYx89FnVb/8BBMoZtT2SIJGJTs2Njxi5D6c1wfhIenapCt5MULee9mqp9Afnaj/+VGEs5sOu4oyVLnGSNbu3vhpU6drOp+VppSC79IRl+IPJmhfeMWH1kFDHCGantEPmL0UOYaHshKyu2Dwol5C0B6AHFg1AUyHdqvzwP5IUX+9eiLE7ix5MkWsEXzMCiVteyORB7wi7rwmVt5Y8Y4oqxZTo4WYsL8AgstU+7Ol58WqTTQmCf4g0ZvtL7EykGLwWMpTeznraIcHk/MfYvNtH/K4xPVzq3SCCGOAJAJHzKraz7V2cmYZy8Xez7tdTkQxbfAh4CDlq/X6KeM2ksSc+3dxBpJ2y3ZkhNaLaffuqj6P819+0JIZkd4T+SROJswbo6Y66aH925Tx7TcZHOTY2j5U0eDnq+TCKv3rYMqo+1lEcqHGo4O2PqZ+xT6OQQIpaQlDI01txvm5qaXOGqf892NH/tK7D9sPlzccr/QJtMpXgMUVL53ehd/eFF563/moVpCyVIdxiFacX1vpwpbxwdkFiRGUH6795fRUtAgqqcyKBbkwm3mliVMuckNvtj8yvlRX5BA3IqtZUs4gRwET1BoTdvwBp6mgK7Arn+SLNjw3Cc22L2m4PXPrZgQzCYxZuftAJMadNPJiJlD5mRlW7clphUkXJxrNDqORPFo7gCp+d1i0gqVVmFTOjVc5Il80DCmpYYvuP9qVJ33cUNr8vKLTctPwBGinfbp9+7BpbFUQ2AeVZqHsielzJo2H0mo8eMfWPjkIanEbpxAU+H+o0JzZdaAVn+//+fkqVbbXyQWxv3uxIbtX1jAXTIjIrb6ZXX8vBJYq1++mmAwlBYH3qV8Fm0BBo/AD78euFWce71Melb0nLL9+VcI9ZnLkq1sBU3JkS0hkDZIF2yGoJqA9UnktE2cZR0M2g2Aigx2bYQIHWR6o9bXW1tUXKkatGBactkSYEUpS2MGG4wknWag9HC4UssJVtjlMkuN3NDXWvABCIAuqKacVcnc8uxFh+mpSnpqKivdkTeS+th2RtoMOlorst8246bnH4WSOtxjgNB2LztJNvyjXNoDURymHrxrHYob2OYfEPVRR06l+va1s+rUYDhjnD1H7rqQomhpvF14rsoeV/JhrxjuKXpQWRjfxC9RQ4bjiKwwUjMxtZSUGX2dA1wW7RWJhfSJqQDuh77ykOpraRGpScBC41k+Dm+sfzqocmrrf9wcWOf2Q39g9DaITdAKijQKqDrnO6A+95sXIjW+qeKP9pvP0ZoffibBl3tkNnOMiOQzF6AIqnRqvOXlhwRj3khX9Grpg67oyX5cg/bV6MjA6hWN8qidgO3tJhprfvmyn5e6eRv8qW+t+walIWfNlVKmB3pKWZX4Vft01YZqz/wNgHA/yoFLC6LUy4xstXlZpyfPyeJWlPXSZKSXB51ZVTkT7s0R9MJ4pLXwXSDIp5OZVclQThzgjffNb0K8tjFAtFs76jVAvPYwG4zPFADyx6+GrbvI2dpkF/YKMgT5O6Z/YjeCijyoyVK7PzlIjRbzqVKymDo1WbAXkjzKj1nM3f+A9PTgiOQ8MrV5+xM3p1N1YyK7Xpc5/mYXA364rhPiWUNL1u9lrBdF6dmyufbwn9RQzx36OJM6Yu/u6ZV02BY6WUoc1JpFmu7Nt95KZnMM4zoNcYI5sAwEHgbmSORFgw1sDufApn2a0diPNV+IFYemkR4Xi4ziMkyVZDsbM5npbdI5UBwD1icv9bOM5c8vC5wKP1spaVjmAd0xMzDjf3wqMkB+Spt9Ik6x/UIJy3IfhuH6r3Z6bl77NefsNlCTzEAenECa1ZEmxSU5yVjvNQWi1ueO9izZL10STCSvHPkFQ8AEcDN+8wWKuDm6/BB3VVV3uD/sZfR7pZtuvzfKeRebHe/z+bNRaLhwOR5EBh9Sf7LcUXf/xJTmy+9eVnv+smuIB49ENHNh5+9urUA8eFEWFewJpCobfXPGWZ1W7wjHA0Ox5Y7XOobMdNQ2Q4HYD6yxMqi1R8opJa4LyXlUjv4In2j+sDzPrW0Y+XADQc2Wgegyc+LbWyrXD2ADNXh1HSxWv/TgA4bo0ILkSic3UaezhtVZbxj0UT99RMObnef3T8R+2R/kJ58duTc3yBTXCp39e8nLVp2oFPwJ2+XREmztm83BdvnzRbiY62ZV/yi8GTnZUaQyqIeN9AD8acFH+ew59lez4hnBmX9gUdPXNCWnqDi2F321jCbt1cNAK5hFtjTzPUQyNYoNMcUQIiGhtJ86Yd1azeNyuion3Mlz0I+FfqOONDhg0PCRhsba8ry/5aKEmay/ib4BaxDJAV7xbItnbbx+N+D/lUW6eBW5aNefv2EG7jq/0ZpWc7W5fFCHits9IQr2rUYXl8oIeZRVTLZuNaOC3miaS6VAIAzYGc/GhQhqa9CMOIb3bNPW8o+hm6wgydplDZKXATER341ZXpsJSwESc9HOVNrGK0sHVrM9qP35cGLLwIPj1duuTnpuC4L0Ry6zAxt+fztIhRPbTK1oPNmjkWYIe01N/qtBHhfyDwSDbF28SqV6jLvS+okMVl5MMAPQ+xwomYnzpfdRnbLTerjeR6fqrrLXhr/SYykjTnIT8+SJiRkfE54sXPSoXGUCs/v5PoZJHDb6yvXCBs5vVrMlpfS2ZH2sDZjl86P+3PejustfOUli2+b7MyN2ftvNxkwwdVH4LBYAZqoA7qw9nSHj706GRm90OA8qB1nT3FwuLi5VJyA8rJiQeBSBMZ0sDV+xQWsg0seLULa3zpgHnINlOdJZ3RywaGhXXmYF5JKExNTT3vwVYOWe+VNrCz/cspmFOrz4VPFXcGPXt/on9KzfkSnS7ad2jAaMY5OFMHltSEda0TO7tXnj2OLXSzQLw0pit/pr+3t1ejUKJqRNif7ZXKAaBDkTxveaHGLDGT3w3lOEPAKfdpdK6IUrakpYWps7PzrbbvxPG8MLDvzQBcMetPnCfF/JjEmMRmM4rb3t4eysbm3nQnyMKCTU5OzmfrK0fnMBETJOOT8+SveLhO5Q5Y/OaLirh1vvg2MEMrAP+T5sQkElU7GJRAzA8xddrxaVLfCtbMNEzBIAvo/6v4/zcFkfXYI5n/NbFHmn7/pZjMFjl9/lKI5N+mqaqrUqtsG/kfUEsHCNj/tHTNEAAAyhAAAFBLAwQUAAgACACjOJlBAAAAAAAAAAAAAAAAFgAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNLK81LLsnMz1NIT0/yz/PMyyzR0FSoruUCAFBLBwhFzN5dGgAAABgAAABQSwMEFAAIAAgAoziZQQAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlWmuT27YV/ez8Cgw/dHbblUQQBB+ulMyuJ04946SertPp1OPJgCREMaJIhqR2ua7733sBkNSD0kqiNt40sS2DpC4e95z7AqjxN9UiRnc8L6I0mWh4qGuIJ34aREk40ZbldOBo33z91Tjkaci9nKFpmi9YOdHMoaGt+sHd0BF9o2Ci6dR3iOvQgR5MycDExBswHrAB8ZhnEZtOXdPWEKqK6GWS/sAWvMiYz2/9GV+wt6nPSjnkrCyzl6PR/f39sJl8mObhKAy9YVUEGoKFJ8VEqy9ewnAbne6JFDd0HY/+9f1bNfwgSoqSJT7XkFBqGX391YvxfZQE6T26j4JyNtEcGxSb8SicgZaWYWloJIQyUDXjfhnd8QK6rt1KnctFpkkxlojvX6grFLfqaCiI7qKA54DP0CCuZTuO6+qOQS3H0VCaRzwpa1lczzlqRhvfRfxeDSuu5Iym7gKKd1EReTGfaFMWF6BVlExzQBQWlC/htigfYu6xvLlfrQdfwV8QiD5xMRZQp2CYaLZ75ZIrW9evKNXVStan1VCZprEcU0fURZ8/I0M3dHQlGqwaAxrLUl/p6plOVGOoxlQNVTKm6m4qUVPJmErGJI9oWd+v1KwfbOjZaEnWtcSgn/hY8JHqb+nprOmJhRKfERarlw1BYt1Yrl80Zn1rqVtbNlhXDa6/dMR/Ei/rTI1IL43w2qzKGvZP2rGWZkbHwmszmuYVJnTvjMYpem5P2Spp6G5XSYPuUfJMbJtJMV1DFuaS/+SnMyU5S80+M1rmOY7fY0Jb3/D6xuVVi+v2MRiebFHjURMKx/WCUDETsrVFl3xRiCUSV8YmhBEF37VsCCUUYRcaW/iwgTBFJoVb7CBLtDYiwm1NRJCDhBwmSEYg6sB/pnRpC1EYSzy0lW8jYiJKEJZxy0SAApKxDzAxCEhQiih0ErNjMS2xkGnBDXGQCQsUUc8WkYVAP7iHyQ1EMCKiL7aRYSHLQLaInNgUAdVyxNphUANZOrJEVwidEDZVyIQeDiJCG/CCLC2iFtwZj7OWFYljlGTLcgM7fxE0l2W6JR2k/vxmC2vOirK5BiHIVqucqLLXRsp8MY6Zx2OoK26FGSB0x2Lh5XL8aZqUqPV39SzMWTaL/OKWlyX0KtDP7I69ZSWvXoN00SxQTi0z+Zgv/TgKIpb8E2xEDCEGRG1it/AqsZuQdOUsfprmwe1DAYaDqn/zPIUFuPbQwrpLLcM1iONAtwf1DXGsoY6JTrFDDMc1IDAVPhMGbxhkCIGfEss1sKW7OuTmh/o7jI2hS03Tti3TMl1MTDU1v2tVYxUvGizDXLhcjb64eVPcpPHqUZZGSfmKZeUyl0UaBMpcKHWdhDGX2ErKod7x515a3Sq/Imqs9w8Z3NUIe+GrNE5zBA5pUAoCdeupVsqIlbVSupTRpUTLUhS032PXkBKy9VQrpYB2tbRaU9yoifVmmqhQxaO2YWTSZkT1tEyi8m1zU0b+vNbUUPI/LBcemNuaUayNiU8cE+8bczzaMrHxnOcJj5UhJcDlMl0WyrLXFrIs+DtWzq6T4B88BJd8x0RULGFsJSqXpfyM+9ECOqrntZ0wQeyPsFb1NOBhzhsVY1kYK2jlt/q6WXcey6Fe5+niTXL3Hqxma6njUaPPuPDzKBPGiTwI03O+sr8gKhgE+WC9HyhfgBa+CDiAZClQ1BBblrM0l7UvuC20wkerLOeF2DUoHhAMA7GkEgHnorpEE3ENF3JYHvMFlMWolFY7XSZygpbBqSy5BVUo9X6GSLPK6LXAigMQ2GPGiMXZjImyvAYpZg8834BNDvd9GmyDCVxJjSF6ZMpsMs6VwZW1o6EMhpN+uraYlTuUEOHmUOQX0pLbTuLib1EQcBm+leUpLHZDGNYQhgrC6hj0wj8oehuoJMsFzyO/1ZlJUGCdy2a1jV6PALXy32NwwkfihM/D6XidvW2d8e9BZz9dLFgSoEQWoO95VU4jHgfaqvhhugghSodl2TyR392kVW049TAdEMt2wAaRVccOdBt5ZzdyTQI+1a/+Pp0WvESVKJ2h5ICBzF/H69iyiuKI5Q/bOWsagScqlEfNSY0oyEYwU8iLUZgOEgBrmCVh67+QT77jaR3266c8CctZbQZNFoMqR6xVZSmIbZN+LId7WTb6smz0YnndPyTjp7OsS5ap+4VZ3iItPJK0sD9pbC9ppC9p5GzS+jgmcSVlLnleyliXMrqDMdaTLm8vXWZfusznocuSdGHDeV6+vOP48g7w9bqt++7EyUvVSYCIYWEciBm7SJw9Tl6nqpwd4GxPUdk3/XV42Vkc0mOLw5OgCw9Al50IXdYPur455TjorH7QvUlK2Kay+IaX95wnu40uVMgJAMkuAP3HAdyuY/1uHWtgx3DEx6SublKyo6w9BmJMiQSZ4nMr219z7+L/hH83u5e9YfJ4OJJtMOhOMM7IKCdiUcTi/R9aROpMdsFEshHjeUUaL0t+6+fgKqs3oGpl9ekl1gWXMj/JC1HpY1tcTaNq7XRmlubRpzQpO6nlRLM7h7ow9NTxEUJp8mOmDn/mkxPNOegaM/3N8KfX/OGT6TOchj7qfkn6hLo9Tg62zpqAlqo+a7rw0ACxSzRCiXoBcIDOqsuncSJX+/PNLf9lycV7/a09BPoLupjDOjFcBJfoz0gsX+Seuco9WOWepJN7qurx5BNHRdnqVindunpgfb/V9eBUHv2LA/2Nlyfq6eqsd9APq3dp/BCmyYeLFWgKsCsUXnyrxvpQwd384+XlFZJi82MFpvsENifqin08jq4cYkFxAmNKvk8weYJa4LF66zkt4JaHEvstEvbQuy3UmztBzIFzmA3ulPwZtfIur3yKWrnlDj8ted0gLPbMuI7Df/plmZZ/vc6yPK1EyOfoOudsoh4LD7tdLj5Ie/94Cbf1c/Huqxiqm13hW8ygbU539u7kDLyLkuXlO4EUkqdgQ91xKbZt3TBc06amqVLq0MLEoSYhNqWGiy3YvXxqz7Mfh/S6SWvsCumXDZOSnF341F+0nXuBYzkSHdF4qjn5tGKA7bqa2AlfbWPydWAh5JviUbYrbI41zl1nfOwwuDdtzdAD3JtnBJcocHeftnbAxU8Prnda0TzfLrLM8zY9Mts9/bYnOblsxpb529727M+2dVrcSraqAqkTZOfoCGqxAy+gMlWurU6PZJe+WvfNpGeYxxExWeQdspHmvFVe89pkdkIWO/QG4ItlManTze6oY+hrUefwGdv2nscrLuRPKQZIvH25PHBKyU87ZOO9DtmOOXH6fzlkM/5gh2w7vdLc8MpvK+aXsuxEE9Q6KO/joIfe+XzhMtN0XRPqTOo6ru2ahiozyVA3bMchrmXZuu5S5/gq81VTCFUX15c7Did6lEevztoK7QjgJ2K2XlsCHOt/8NnV0GFLpBuWWP30n9b+5q39/fcEA6TPDOd2jni1pzI1137tcfJOvzG/aM3oRJaINrfqwjZ3btcP1Cad7XrPzWPvEv4LnrV08sdo/ceQ8sfJ9Y9ivv4fUEsHCBPI+95RCgAAbTUAAFBLAQIUABQACAAIAKM4mUHl1GYMQwIAAD4CAAAgAAAAAAAAAAAAAAAAAAAAAAAvZ2VvZ2VicmEvZ3VpL2ltYWdlcy9nby1uZXh0LnBuZ1BLAQIUABQACAAIAKM4mUHY/7R0zRAAAMoQAAAWAAAAAAAAAAAAAAAAAJECAABnZW9nZWJyYV90aHVtYm5haWwucG5nUEsBAhQAFAAIAAgAoziZQUXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAohMAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACACjOJlBE8j73lEKAABtNQAADAAAAAAAAAAAAAAAAAAAFAAAZ2VvZ2VicmEueG1sUEsFBgAAAAAEAAQAEAEAAIseAAAAAA==" enableRightClick="false" showAlgebraInput="false" enableShiftDragZoom="false" showMenuBar="false" showToolBar="false" showToolBarHelp="true" />
Ser fram emot detta. --Håkan Elderstig 28 augusti 2012 kl. 21.15 (UTC)
Derivator
Provkarta
Denna sida är ett slags provkarta på vad wikiskola har att erbjuda och visar olika typer av delar som kan ingå i en sida. Här finns bilder som ligger på wikimedia, formler som kopierats från wikipedia, filmer, GeoGebra, en quiz och en widget från Wolfram Alpha. Det finns mallar för exempel (blå), definitioner (rosa), länkar, (bruna), uppgifter, (gula), bokhänvisningar (lila), tänkare (orange) samt Khanövningar (gröna).
Embed:
<a href="https://wikiskola.se/index.php/Matematik_3C">Click to open the embedded page at Wikiskola.se</a><iframe src="https://wikiskola.se/index.php/Matematik_3C" style="width:1200px;height:800px;border:0px;" frameborder="0" scrolling="yes"></iframe>
Problemlösning med derivatan
Detta är en sammanfattning som introduktion till avsnittet om derivator. Den innehåller ett fysikproblem med en måsjägare.
3.2 Derivator
Använda derivatans definition
Deriveringsregler för polynom
Tillämpningar på derivata
3.3 Derivator och grafer
Rita kurvor med hjälp av derivatan
Största och minsta värde
Derivatans graf
Andraderivatan
Maximi- och minimiproblem
3.4 Merom derivator
Lite Algebra
Derivatan av potensfunktioner
Diskontinuerliga funktioner
Diskreta funktioner
Inflexionspunkt och derivata
Tillämpningar (ej i Liber)
Derivator kommer till användning på många områden inom naturvetenskap, ekonomi, mm. Här kommer ett exempel från fysiken.
Exempel |
---|
Tryck
Antag att [math]\displaystyle{ p(h) }[/math] betyder lufttrycket (i pascal) vid höjden [math]\displaystyle{ h }[/math] (i meter) över havsnivån. Då kommer derivatan [math]\displaystyle{ p'(h) }[/math] att ange hur mycket trycket ökar per meter i höjdled. Derivatan får alltså den fysikaliska enheten pascal per meter. Eftersom trycket i själva verket avtar med höjden, kommer alltså derivatan att bli negativ. Texten i ovanstående avsnitt kommer från Wikipedia.se |
Derivataquiz
Prov
Integraler
Kan man tänka sig någon trevlig frågeställning som ingång till integralerna?