Formler för dubbla vinkeln: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 41: | Rad 41: | ||
:<math> | :<math> | ||
\sin \frac{\theta}{2} &= \sgn \left(2 \pi - \theta + 4 \pi \left\lfloor \frac{\theta}{4\pi} \right\rfloor \right) \sqrt{\frac{1 - \cos \theta}{2}} \\[3pt] | \sin \frac{\theta}{2} &= \sgn \left(2 \pi - \theta + 4 \pi \left\lfloor \frac{\theta}{4\pi} \right\rfloor \right) \sqrt{\frac{1 - \cos \theta}{2}} \\[3pt] | ||
\sin^2\frac{\theta}{2} &= \frac{1 - \cos\theta}{2} \\[3pt] | \sin^2\frac{\theta}{2} &= \frac{1 - \cos\theta}{2} \\[3pt] | ||
Rad 49: | Rad 49: | ||
&= \frac{1 - \cos \theta}{\sin \theta} = \frac{-1 \pm \sqrt{1+\tan^2\theta}}{\tan\theta} = \frac{\tan\theta}{1 + \sec{\theta}} \\[3pt] | &= \frac{1 - \cos \theta}{\sin \theta} = \frac{-1 \pm \sqrt{1+\tan^2\theta}}{\tan\theta} = \frac{\tan\theta}{1 + \sec{\theta}} \\[3pt] | ||
\cot \frac{\theta}{2} &= \csc \theta + \cot \theta = \pm\, \sqrt\frac{1 + \cos \theta}{1 - \cos \theta} = \frac{\sin \theta}{1 - \cos \theta} = \frac{1 + \cos \theta}{\sin \theta} | \cot \frac{\theta}{2} &= \csc \theta + \cot \theta = \pm\, \sqrt\frac{1 + \cos \theta}{1 - \cos \theta} = \frac{\sin \theta}{1 - \cos \theta} = \frac{1 + \cos \theta}{\sin \theta} | ||
</math> | |||
= Quiz = | = Quiz = |