Deriveringsregler för exponentialfunktioner: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 73: | Rad 73: | ||
== Exempel 3 == | == Exempel 3 == | ||
'''Temperaturen (T) i en ugn ökar enligt funktionen nedan, där x är tiden i minuter. Med hur många grader per minut ökar temperaturen vid tiden 15 minuter?''' | |||
: <math> T(x)=120 \cdot 1,09^x </math> | |||
'''Lösningsförslag:''' | |||
Vi ska beräkna hur många grader per minut temperaturen ökar vid tiden 15 minuter, vilket betyder att vi ska beräkna följande: | |||
: <math> T′(15) </math> | |||
Vad vi vill göra är alltså att beräkna funktionens derivata och sedan undersöka derivatans värde då variabeln x (tiden) har värdet 15. | |||
Derivatan av funktionen beräknas med hjälp av deriveringsregeln för f(x)=ax: | |||
: <math> T′(x)=120 \cdot ln(1,09) \cdot 1,09^x </math> | |||
Vi stoppar in x=15 i derivatan och får: | |||
: <math> T′(15)=120 \cdot ln(1,09) \cdot 1,09^15 ≈ 37,7 </math> | |||
Svar: Antalet grader temperaturen ökar per minut vid 15 minuter är 37,7 grader/minut. | |||
''Exeempel 2 och tre kommer från matteboken.se'' | |||
= Härledning med derivatans definition = | = Härledning med derivatans definition = |