Begreppen sekant och tangent: Skillnad mellan sidversioner
Hoppa till navigering
Hoppa till sök
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 19: | Rad 19: | ||
En sekantlinje av en kurva är en rät linje som skär två eller fler punkter på kurvan. En sekantlinje kallas oftast för en sekant, men det ordet används också ibland för enbart sträckan mellan de två punkterna på sekantlinjen. Själva ordet sekant kommer från latinets "secare" som betyder "att skära" eller "att klippa" | En sekantlinje av en kurva är en rät linje som skär två eller fler punkter på kurvan. En sekantlinje kallas oftast för en sekant, men det ordet används också ibland för enbart sträckan mellan de två punkterna på sekantlinjen. Själva ordet sekant kommer från latinets "secare" som betyder "att skära" eller "att klippa" | ||
}} | }} | ||
Om punkterna ligger nära varandra kommer sekanten att ha ungefär samma lutning som en tangent mellan punkterna. Sekantlinjen kan användas för att approximera tangenten för en kurva i en punkt P. Om sekanten för kurvan definieras genom de två punkterna P och Q, med P fixerad och Q varierbar, så kommer sekanten att närma sig tangenten när Q närmar sig P (antag att punkten bara har en tangent). | Om punkterna ligger nära varandra kommer sekanten att ha ungefär samma lutning som en tangent mellan punkterna. Sekantlinjen kan användas för att approximera tangenten för en kurva i en punkt P. Om sekanten för kurvan definieras genom de två punkterna P och Q, med P fixerad och Q varierbar, så kommer sekanten att närma sig tangenten när Q närmar sig P (antag att punkten bara har en tangent). | ||
Rad 26: | Rad 25: | ||
=== Sekanten i koordinatsystemet === | === Sekanten i koordinatsystemet === | ||
[[Fil:Secant-graph-sverdrup.png|miniatyr|250px|Sekantapproximation]] | |||
Betrakta kurvan som definieras av ''y'' = ''f''(''x'') i det kartesiska koordinatsystemet och betrakta punkten ''P'' med koordinater (''c'', ''f''(''c'')) och en annan punkt ''Q'' med koordinater (''c'' + Δ''x'', ''f''(''c'' + Δ''x'')). Lutningen ''k'' av sekantlinjen, uttryckta i ''P'' och ''Q'', ges av | Betrakta kurvan som definieras av ''y'' = ''f''(''x'') i det kartesiska koordinatsystemet och betrakta punkten ''P'' med koordinater (''c'', ''f''(''c'')) och en annan punkt ''Q'' med koordinater (''c'' + Δ''x'', ''f''(''c'' + Δ''x'')). Lutningen ''k'' av sekantlinjen, uttryckta i ''P'' och ''Q'', ges av |