Bestämning av enkla integraler i tillämpningar: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) (Skapade sidan med '== Arean av ett område mellan två kurvor == {{lm3c| Integraler | ss }} {{#ev:youtube| bnAKuTj6GjY | 340 | right |Sid 214-220 - Integral och area}} {{malruta| Denna lektion...') |
Hakan (diskussion | bidrag) |
||
Rad 25: | Rad 25: | ||
{{flipped | Lös uppgifterna 4301 - 4316. Läs på om [[Mer om integraler]]. | {{flipped | Lös uppgifterna 4301 - 4316. Läs på om [[Mer om integraler]]. | ||
}} | }} | ||
== Fler tillämpningar == | |||
{{Lm3c|Tillämpningar|229-232}} | |||
{{#ev:youtube| RbpE87irrCI | 340 | right |Sid 229-232 - Tillämpningar på integraler}} | |||
{{malruta| | |||
Denna lektion kommer du att lära dig lösa problem med hjälp av integraler. | |||
}} | |||
== Tillämpningar - exempel på cirkelns area == | |||
Det finns många praktiska tillämpningar av integraler och nedanstående exempel är snarare ett sätt att visa att formeln stämmer. Men tillvägagångssättet är lätt att kopiera till andra områden därför passar det här. | |||
=== Beräkning av cirkelskivans area med koncentriska skal === | |||
[[File:Circle-calc-area.svg|left|200px]]{{clear|left}} | |||
Om cirkelskivan delas upp i koncentriska ringar med omkretsen <math>2\pi t</math> kan arean beräknas med integralen | |||
:<math>A = \int_0^{r} 2 \pi t \, dt = \left[ 2\pi \frac{t^2}{2} \right]_{0}^{r} = \pi r^2</math> | |||
{{svwp | cirkel}} | |||
== Problemlösning med integraler == | |||
Derivator och primitiva funktioner i en behändig '''formelsamling''': | |||
* [http://sv.wikibooks.org/wiki/Formelsamling/Matematik/Derivering_och_integrering Formelsamling på WikiBooks] med derivering och integrering. | |||
=== Fysik och integraler - Gruppuppgift === | |||
Lös några av uppgifterna i grupp. Välj sedan en som ni gör en snygg skriftlig redovisning av. | |||
Var och en i gruppen ska vara beredd att gå fram och redovisa uppgiftens lösning på tavlan. | |||
[[media: Problemlösning_fysik_och_integraler.pdf | Problemlösning Fysik och Integraler]] | |||
=== Uppgifter från nationella prov === | |||
Här är en samling uppgifter med integraler från gamla nationella prov: | |||
{{print|[[Media:Uppgifter_med_integraler_fr_NP.pdf|Integraluppg. fr NP]] }} | |||
=== Hemtenta === | |||
{{uppgruta|<big>'''Hemtenta'''</big> | |||
Du får välja en uppgift från övningsbladet ovan, [[media: Problemlösning_fysik_och_integraler.pdf | Problemlösning Fysik och Integraler]]. | |||
Du ska nu låta dig inspireras men skapa en ny uppgift av samma kaliber som den du utgick ifrån. Det ska alltså vara en fysikuppgift. Det är förmodligen samma fysikformeler. Men du väljer en anna problemformulering. Uppgiften ska innehålla en annan (gärna knepigare) funktion än i inspirationsuppgiften. | |||
Nu ska du skriva rent din uppgift i Word och på en separat sidan gör du ne snygg lösning. Du måste fixa integraler och bilder på ett snyggt sätt. Din lösning ska hålla en sådan kvalitet att den duger att dela ut till eleverna nästa år eller i er parallellklass. | |||
Kolla att du har räknat rätt genom att använda Geogebra, WolframAlpha eller liknade ställe. Använd med fördel GGB för att skapa snygg grafik. | |||
Bedömning: Det är både din kommunikativa förmåg, din problemlösningsförmåga och din kreativa matematik som bedöms. | |||
Deadline: Uppgiften ska vara lämnad för bedömning om exakt en vecka. | |||
}} | |||
==== Exempeluppgifter ==== | |||
{{uppgruta | Fritt fallande fel | |||
Här är en uppgift med ett facit som innehåller några mindre fel. kan du se vilka? | |||
[[Fil:Integraluppgift_med_fel.png]] | |||
}} | |||
{{clear}} |
Versionen från 21 juni 2018 kl. 11.42
Arean av ett område mellan två kurvor
Definition |
---|
Arean mellan två kurvor
[math]\displaystyle{ \int_a^b \! f(x)-g(x)\,dx }[/math] |
Fler tillämpningar
Tillämpningar - exempel på cirkelns area
Det finns många praktiska tillämpningar av integraler och nedanstående exempel är snarare ett sätt att visa att formeln stämmer. Men tillvägagångssättet är lätt att kopiera till andra områden därför passar det här.
Beräkning av cirkelskivans area med koncentriska skal
Om cirkelskivan delas upp i koncentriska ringar med omkretsen [math]\displaystyle{ 2\pi t }[/math] kan arean beräknas med integralen
- [math]\displaystyle{ A = \int_0^{r} 2 \pi t \, dt = \left[ 2\pi \frac{t^2}{2} \right]_{0}^{r} = \pi r^2 }[/math]
Problemlösning med integraler
Derivator och primitiva funktioner i en behändig formelsamling:
- Formelsamling på WikiBooks med derivering och integrering.
Fysik och integraler - Gruppuppgift
Lös några av uppgifterna i grupp. Välj sedan en som ni gör en snygg skriftlig redovisning av.
Var och en i gruppen ska vara beredd att gå fram och redovisa uppgiftens lösning på tavlan.
Problemlösning Fysik och Integraler
Uppgifter från nationella prov
Här är en samling uppgifter med integraler från gamla nationella prov:
Hemtenta
Uppgift |
---|
Hemtenta
Du får välja en uppgift från övningsbladet ovan, Problemlösning Fysik och Integraler. Du ska nu låta dig inspireras men skapa en ny uppgift av samma kaliber som den du utgick ifrån. Det ska alltså vara en fysikuppgift. Det är förmodligen samma fysikformeler. Men du väljer en anna problemformulering. Uppgiften ska innehålla en annan (gärna knepigare) funktion än i inspirationsuppgiften. Nu ska du skriva rent din uppgift i Word och på en separat sidan gör du ne snygg lösning. Du måste fixa integraler och bilder på ett snyggt sätt. Din lösning ska hålla en sådan kvalitet att den duger att dela ut till eleverna nästa år eller i er parallellklass. Kolla att du har räknat rätt genom att använda Geogebra, WolframAlpha eller liknade ställe. Använd med fördel GGB för att skapa snygg grafik. Bedömning: Det är både din kommunikativa förmåg, din problemlösningsförmåga och din kreativa matematik som bedöms. Deadline: Uppgiften ska vara lämnad för bedömning om exakt en vecka. |
Exempeluppgifter
Uppgift |
---|
Fritt fallande fel
Här är en uppgift med ett facit som innehåller några mindre fel. kan du se vilka?
|