Funktionsvärde: Skillnad mellan sidversioner
Hakan (diskussion | bidrag) |
Hakan (diskussion | bidrag) |
||
Rad 46: | Rad 46: | ||
== Aktivitet == | == Aktivitet == | ||
=== Gissa andragradsfunktionen i en tävling === | |||
{{uppgruta| '''En stor GeoGebraövning'''' | |||
[https://www.geogebra.org/m/Zn9BAExZ Gissa andragradspolynom] | |||
}} | }} |
Versionen från 23 april 2018 kl. 10.43
Teori
Kvadratiska modeller
Definition |
---|
Så här ser andragradsfunktionen ut på allmän form: y(x) = ax2 + bx + c c anger var grafen skär y-axeln. a gör bland annat parabeln smalare eller bredare. bx-termen ger en diagonal förflyttning av hela kurvan (något förenklat uttryckt). |
Exempel 1
Exempel 1 handlar om att man har en måttsatt bild och ska anpassa den allmänna funktionen y(x) = ax2 + bx + c till dessa mått.
Här är det smart att placera origo symmetriskt i bilden och att kika på ställena där grafen skär x-axeln och där den skär y-axeln.
Övning 1 - Skapa parabelns funktion utifrån en bild med mått
Anpassa den allmänna funktionen till vattenstrålen i bilden. Strålen når 2 m långt och är 1.5 m hög.
Övning 2 - Skapa parabelns funktion utifrån vertex och nollställen
Detta är en viktig uppgift. Se även Exempel 1 på sid 161 i Matematik 2C.
Andragradsfunktionen kan skrivas y = ax2+bx+c på allmänn form:
Grafen går genom punkterna (-16, 0) och har vertex i (0,-14).
- Vilket är det andra nollstället?
- Rita grafen.
- Bestäm b.
- Bestäm c.
- Bestäm a.
- Skriv ett uttryck för funktionen.
Aktivitet
Gissa andragradsfunktionen i en tävling
Uppgift |
---|
En stor GeoGebraövning'
|
Lär mer
|
|
|
Parabelns egenskaper i GeoGebra 2
I Malins övning skriv kurvan på annan form (x-k)2, osv. Nyttigt men vi hinner inte göra den på lektionstid. Gör den gärna hemma!
Digitala rutan samt detta avsnitt sid 160-164 ersätts av en Övning i Geogebra på Vertex och faktorform av Malin C.
Överkurs: Andra kägelsnitt Av Malin C. Pröva själv att konsttruera med hjälp av mittpunktsnormaler.
Överbliven provupgift (svår)
Bilden visar en kastparabel.
Tänk dig att kastbanans högsta punkt är 35 m.
Längden på kastet är 110 m.
Utgå från formen för andragradsfunktionen [math]\displaystyle{ y(x) = a\cdot x^2 + b \cdot x + c }[/math]
Gör en matematisk modell av kastbanan.