Grupparbete Geometri Ma1c: Skillnad mellan sidversioner

Från Wikiskola
Hoppa till navigering Hoppa till sök
Ingen redigeringssammanfattning
Rad 1: Rad 1:
= Teori =
== Pythagoras sats ==
== Pythagoras sats ==


Rad 37: Rad 39:
{{clear}}
{{clear}}


== Aktivitet ==
= Aktivitet =


=== Vi ser en film från TEDEd ===
=== Vi ser en film från TEDEd ===
Rad 45: Rad 47:
Vi ser en film tillsammans på [https://ed.ted.com/lessons/how-many-ways-are-there-to-prove-the-pythagorean-theorem-betty-fei#review TEDEd].
Vi ser en film tillsammans på [https://ed.ted.com/lessons/how-many-ways-are-there-to-prove-the-pythagorean-theorem-betty-fei#review TEDEd].


{{clear}}
=== Programmering i Python ===
{{Python|[[Avståndet_mellan_två_punkter_Python|Avståndet mellan två punkter Python]]}}
Beräkna hypotenusans längd med ett program. Det här är en övning som ger mer förståelse för Pythagoras sats och formelns betydelse i beräkningar.
{{clear}}
{{clear}}


Rad 108: Rad 103:
'''[[Presentationstrick i GeoGebra]]''' handlar om hur du exempelvsi flyttar trianglar och samtidigt roterar dem genom att dra i en glidare. Dessutom hur du på ett magiskt sätt visar eller döljder objekt när du drar i glidaren.
'''[[Presentationstrick i GeoGebra]]''' handlar om hur du exempelvsi flyttar trianglar och samtidigt roterar dem genom att dra i en glidare. Dessutom hur du på ett magiskt sätt visar eller döljder objekt när du drar i glidaren.


== Lär mer ==
= Python =
 
=== Programmering i Python ===
 
{{Python|[[Avståndet_mellan_två_punkter_Python|Avståndet mellan två punkter Python]]}}
 
Beräkna hypotenusans längd med ett program. Det här är en övning som ger mer förståelse för Pythagoras sats och formelns betydelse i beräkningar.
{{clear}}
 
= Lär mer =


# [http://www.webbmatte.se/display_page.php?id=150&on_menu=802&page_id_to_fetch=2027&lang=swedish&no_cache=8585192 Webbmatte om Pythagoras sats]
# [http://www.webbmatte.se/display_page.php?id=150&on_menu=802&page_id_to_fetch=2027&lang=swedish&no_cache=8585192 Webbmatte om Pythagoras sats]
Rad 121: Rad 125:
# http://www.malinc.se/math/geometry/pythagorasen.php
# http://www.malinc.se/math/geometry/pythagorasen.php


== Elevsidor ==
= Elevsidor =


: [[Pythagoras grupp 1]]
: [[Pythagoras grupp 1]]
: [[Pythagoras sats 2]]
: [[Pythagoras sats 2]]
: [[Pythagoras bevis grupp hamale|Pythagoras bevis grupp HaMaLe]]
: [[Pythagoras bevis grupp hamale|Pythagoras bevis grupp HaMaLe]]
<headertabs />

Versionen från 1 oktober 2018 kl. 19.51

[redigera]

Pythagoras sats

Varför ska man kunna Pythagoras sats?

  • Det hör faktiskt till allmänbildningen
  • Man kan faktiskt använda det i verkligheten. Tag ett rep och spänn upp en triangel med sidorna tre, fyra och fem meter och du har en rät vinkel med stora mått. Bra om du ska sätta ut en husgrund till exempel.
  • Den är oerhört användbar till att lösa matematiska problem.

Definitioner

En triangel är rätvinklig om en vinkel är rät (90 grader eller pi/2)
Den längsta sidan i en rätvinklig triangel kallas hypotenusa.
De två kortare sidorna i en rätvinklig triangel kallas kateter.

Sats

Summan av kateternas kvadrater är lika med kvadraten på hypotenusan.

[math]\displaystyle{ a^2 + b^2 = c^2 }[/math]

Bevis

Bevis genom att arrangera om trianglarna.
Bevis genom att arrangera om trianglarna.

Animering av samma bevis genom att arrangera om trianglarna.

här ser vi ett annorlunda sätt att arrangera om trianglar och rektanglar för att bevisa Pythagoras sats.
här ser vi ett annorlunda sätt att arrangera om trianglar och rektanglar för att bevisa Pythagoras sats.

Bilderna kommer från commons.wikimedia.org

[redigera]

Vi ser en film från TEDEd

How many ways are there to prove the Pythagorean theorem? - Betty Fei

Vi ser en film tillsammans på TEDEd.

Kolla om du förstår

Välj gärna ett bevis och fundera på om du förstår och kan förklara för dig själv hur beviset fungerar. Vad bygger beviset på för satser?

Länken nedan går till en s k GeoGebraBook. Det är en samling med flera GeoGebrakonstruktioner som du kan bläddra mellan. Den heter Proofs Without Words, av Steve Phelps, Feb 2, 2015. Tanken med att den är utan ord är att du ska få klura själv.

Proofs Without Words for the Pythagorean Theorem.

Problemlösning

Vi presenterar en serie problem av algebraisk geometrisk karaktär vilka lämpar sig att lösa med hjälp v Pythagoras sats.

Diskussion

Är beviset till höger ett fullt allmängiltiga bevis?

Gruppens uppgift

Uppgift
Förklara ett bevis av Pythagoras sats

Ni ska välja ett bevis av Pythagoras sats och förklara det.

Gör en tydlig presentation som betonar beviset och ur man kan veta att det är ett giltigt samband.

Bedömningen sker på kommunikations- och resonemangsförmågan.


Vilka grupper?

Tre per grupp, Vi lottar.

Ämnesområden

Välj ett bevis av Pythagoras sats genom att söka på geogebra.org eller Google. Lämpliga sökord: pythagorean theorem

Innehåll i presentationen

Använd text, bild, animeringar, filmer, etc för att skapa en pedagogisk presentation

  • Definitioner, satser och bevis
  • Exempel

Redovisningsformer

Ni kan redovisa genom att hålla ett tal (med presentationsverktyg), skapa en GeoGebra (med förklarande text och flera steg eller animering) eller skapa en sida på Wikiskola.

Presentationstrick i GeoGebra handlar om hur du exempelvsi flyttar trianglar och samtidigt roterar dem genom att dra i en glidare. Dessutom hur du på ett magiskt sätt visar eller döljder objekt när du drar i glidaren.

[redigera]

Programmering i Python


Beräkna hypotenusans längd med ett program. Det här är en övning som ger mer förståelse för Pythagoras sats och formelns betydelse i beräkningar.